Background: Diazoxide maintains myocyte volume and contractility during stress via an unknown mechanism. The mechanism of action may involve an undefined (genotype unknown) mitochondrial ATP-sensitive potassium channel and is dependent on the ATP-sensitive potassium channel subunit sulfonylurea type 1 receptor (SUR1). The ATP-sensitive potassium channel openers have been shown to inhibit succinate dehydrogenase (SDH) and a gene for a portion of SDH has been found in the SUR intron. Diazoxide may be cardioprotective via inhibition of SDH, which can form part of an ATP-sensitive potassium channel or share its genetic material. This study investigated the role of inhibition of SDH by diazoxide and its relationship to the SUR1 subunit.
Study Design: Mitochondria were isolated from wild-type and SUR1 knockout mice. Succinate dehydrogenase activity was measured by spectrophotometric analysis of 2,6-dichloroindophenol reduction for 20 minutes as the relative change in absorbance over time. Mitochondria were treated with succinate (20 mM), succinate + 1% dimethylsulfoxide, succinate + malonate (8 mM) (competitive inhibitor of SDH), or succinate + diazoxide (100 μM).
Results: Both malonate and diazoxide inhibit SDH activity in mitochondria of wild-type mice and in mice lacking the SUR1 subunit (p < 0.05 vs control).
Conclusions: The ability of DZX to inhibit SDH persists even after deletion of the SUR1 gene. Therefore, the enzyme complex SDH is not dependent on the SUR1 gene. The inhibition of SDH by DZX can play a role in the cardioprotection afforded by DZX; however, this role is independent of the ATP-sensitive potassium channel subunit SUR1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660462 | PMC |
http://dx.doi.org/10.1016/j.jamcollsurg.2013.01.048 | DOI Listing |
Neuropharmacology
December 2024
Department of Pharmacology, Medical School of Southeast University, Nanjing, China. Electronic address:
Epilepsy, a prevalent neurological disorder characterized by spontaneous recurrent seizures, significantly impacts physiological and cognitive functions. Emerging evidence suggests a crucial role for metabolic factors, particularly lactate, in epilepsy. We discuss the applicability of the astrocyte-neuron lactate shuttle (ANLS) model during acute seizure events and examine lactate's metabolic adaptation in epilepsy progression.
View Article and Find Full Text PDFFEBS Open Bio
December 2024
Department of Cell Physiology, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, Japan.
Proc Natl Acad Sci U S A
December 2024
Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
Growth hormone (GH) has several metabolic effects, including a profound impact on glucose homeostasis. For example, GH oversecretion induces insulin resistance and increases the risk of developing diabetes mellitus. Here, we show that GH receptor (GHR) ablation in vesicular glutamate transporter 2 (VGLUT2)-expressing cells, which comprise a subgroup of glutamatergic neurons, led to a slight decrease in lean body mass without inducing changes in body adiposity.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Pathology, NYU Grossman School of Medicine, New York, NY, United States.
Introduction: Involved in immunity and reproduction, natural killer (NK) cells offer opportunities to develop new immunotherapies to treat infections and cancer or to alleviate pregnancy complications. Most current strategies use cytokines or antibodies to enhance NK-cell function, but none use ion channel modulators, which are widely used in clinical practice to treat hypertension, diabetes, epilepsy, and other conditions. Little is known about ion channels in NK cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!