Background: Diazoxide maintains myocyte volume and contractility during stress via an unknown mechanism. The mechanism of action may involve an undefined (genotype unknown) mitochondrial ATP-sensitive potassium channel and is dependent on the ATP-sensitive potassium channel subunit sulfonylurea type 1 receptor (SUR1). The ATP-sensitive potassium channel openers have been shown to inhibit succinate dehydrogenase (SDH) and a gene for a portion of SDH has been found in the SUR intron. Diazoxide may be cardioprotective via inhibition of SDH, which can form part of an ATP-sensitive potassium channel or share its genetic material. This study investigated the role of inhibition of SDH by diazoxide and its relationship to the SUR1 subunit.

Study Design: Mitochondria were isolated from wild-type and SUR1 knockout mice. Succinate dehydrogenase activity was measured by spectrophotometric analysis of 2,6-dichloroindophenol reduction for 20 minutes as the relative change in absorbance over time. Mitochondria were treated with succinate (20 mM), succinate + 1% dimethylsulfoxide, succinate + malonate (8 mM) (competitive inhibitor of SDH), or succinate + diazoxide (100 μM).

Results: Both malonate and diazoxide inhibit SDH activity in mitochondria of wild-type mice and in mice lacking the SUR1 subunit (p < 0.05 vs control).

Conclusions: The ability of DZX to inhibit SDH persists even after deletion of the SUR1 gene. Therefore, the enzyme complex SDH is not dependent on the SUR1 gene. The inhibition of SDH by DZX can play a role in the cardioprotection afforded by DZX; however, this role is independent of the ATP-sensitive potassium channel subunit SUR1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660462PMC
http://dx.doi.org/10.1016/j.jamcollsurg.2013.01.048DOI Listing

Publication Analysis

Top Keywords

atp-sensitive potassium
24
potassium channel
24
succinate dehydrogenase
12
channel subunit
12
inhibition sdh
12
sdh
9
independent atp-sensitive
8
subunit sulfonylurea
8
sulfonylurea type
8
type receptor
8

Similar Publications

Lactate: Beyond a mere fuel in the epileptic brain.

Neuropharmacology

December 2024

Department of Pharmacology, Medical School of Southeast University, Nanjing, China. Electronic address:

Epilepsy, a prevalent neurological disorder characterized by spontaneous recurrent seizures, significantly impacts physiological and cognitive functions. Emerging evidence suggests a crucial role for metabolic factors, particularly lactate, in epilepsy. We discuss the applicability of the astrocyte-neuron lactate shuttle (ANLS) model during acute seizure events and examine lactate's metabolic adaptation in epilepsy progression.

View Article and Find Full Text PDF

Dexmedetomidine suppresses glucose-stimulated insulin secretion in pancreatic β-cells.

FEBS Open Bio

December 2024

Department of Cell Physiology, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, Japan.

Article Synopsis
  • Proper glycemic control is important in critical care settings, as it can impact patient outcomes and is influenced by factors such as insulin secretion and glucose metabolism.
  • Various perioperative drugs, particularly dexmedetomidine (DEX), are shown to suppress glucose-stimulated insulin secretion, but the mechanisms remain unclear.
  • Research using pancreatic cell lines and primary cells indicates that DEX reduces insulin secretion without significantly altering other cellular processes, suggesting that it affects insulin signaling pathways and exocytosis mechanisms.
View Article and Find Full Text PDF

Growth hormone receptor in VGLUT2 or Sim1 cells regulates glycemia and insulin sensitivity.

Proc Natl Acad Sci U S A

December 2024

Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.

Growth hormone (GH) has several metabolic effects, including a profound impact on glucose homeostasis. For example, GH oversecretion induces insulin resistance and increases the risk of developing diabetes mellitus. Here, we show that GH receptor (GHR) ablation in vesicular glutamate transporter 2 (VGLUT2)-expressing cells, which comprise a subgroup of glutamatergic neurons, led to a slight decrease in lean body mass without inducing changes in body adiposity.

View Article and Find Full Text PDF

Introduction: Involved in immunity and reproduction, natural killer (NK) cells offer opportunities to develop new immunotherapies to treat infections and cancer or to alleviate pregnancy complications. Most current strategies use cytokines or antibodies to enhance NK-cell function, but none use ion channel modulators, which are widely used in clinical practice to treat hypertension, diabetes, epilepsy, and other conditions. Little is known about ion channels in NK cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!