The reduction of graphene oxide (GO) with a large-scale production has been demonstrated to be one of the key steps for the preparation of graphene-based composite materials with various potential applications. Therefore, it is highly required to develop a facile, green, and environmentally friendly route for the effective reduction of GO. In this study, a new and effective reduced method of GO nanosheets, based on the dye-sensitization-induced visible-light reduction mechanism, was developed to prepare reduced GO (rGO) and graphene-based TiO2 composite in the absence of any additional reducing agents. It was found that the dye-sensitization-induced reduction process of GO was accompanied with the formation of TiO2-rGO composite nanostructure. The photocatalytic experimental results indicated that the resultant TiO2-rGO nanocomposites exhibited significantly higher photocatalytic performance than pure TiO2 because of a rapid separation of photogenerated electrons and holes by the rGO cocatalyst.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am4008566DOI Listing

Publication Analysis

Top Keywords

dye-sensitization-induced visible-light
8
visible-light reduction
8
reduction graphene
8
graphene oxide
8
photocatalytic performance
8
reduction
5
oxide enhanced
4
enhanced tio2
4
tio2 photocatalytic
4
performance reduction
4

Similar Publications

The reduction of graphene oxide (GO) with a large-scale production has been demonstrated to be one of the key steps for the preparation of graphene-based composite materials with various potential applications. Therefore, it is highly required to develop a facile, green, and environmentally friendly route for the effective reduction of GO. In this study, a new and effective reduced method of GO nanosheets, based on the dye-sensitization-induced visible-light reduction mechanism, was developed to prepare reduced GO (rGO) and graphene-based TiO2 composite in the absence of any additional reducing agents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!