Deconstructing crop processes and models via identities.

Plant Cell Environ

Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 2630, Taastrup, Denmark.

Published: November 2013

This paper is part review and part opinion piece; it has three parts of increasing novelty and speculation in approach. The first presents an overview of how some of the major crop simulation models approach the issue of simulating the responses of crops to changing climatic and weather variables, mainly atmospheric CO2 concentration and increased and/or varying temperatures. It illustrates an important principle in models of a single cause having alternative effects and vice versa. The second part suggests some features, mostly missing in current crop models, that need to be included in the future, focussing on extreme events such as high temperature or extreme drought. The final opinion part is speculative but novel. It describes an approach to deconstruct resource use efficiencies into their constituent identities or elements based on the Kaya-Porter identity, each of which can be examined for responses to climate and climatic change. We give no promise that the final part is 'correct', but we hope it can be a stimulation to thought, hypothesis and experiment, and perhaps a new modelling approach.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.12107DOI Listing

Publication Analysis

Top Keywords

deconstructing crop
4
crop processes
4
models
4
processes models
4
models identities
4
identities paper
4
paper review
4
review opinion
4
opinion piece
4
piece three
4

Similar Publications

Following a global catastrophe causing reduced sunlight, the environment would become unfavorable for crop growth. Under such conditions, people might need to convert inedible plant biomass into food to meet their daily nutritional requirements. However, the possibility of converting biomass into food under low-resource conditions has not been thoroughly studied.

View Article and Find Full Text PDF

Laccase, the selectively lignin degrader, vital to the initiation of lignocellulosic deconstruction was immobilized onto activated agarose beads to increase its reuse potential. Laccase cross-linked beads (~ 3.42 mm) recorded a specific activity of 23 Umg, retaining about 80.

View Article and Find Full Text PDF
Article Synopsis
  • Sustainably grown biomass can be used to create fuel and chemicals, helping us use less fossil fuels.
  • Converting biomass into biofuels involves a lot of testing and can take a long time because there are many different combinations of materials and methods to try.
  • Scientists created a new automated system that makes it faster and easier to test different types of biomass, and they showed that it can produce good amounts of useful fuel in a short time.
View Article and Find Full Text PDF

MultiGreen: A multiplexing architecture for GreenGate cloning.

PLoS One

September 2024

Institute of Plant Breeding, Genetics and Genomics, University of Georgia, University of Georgia, Athens, Georgia, United States of America.

Genetic modification of plants fundamentally relies upon customized vector designs. The ever-increasing complexity of transgenic constructs has led to increased adoption of modular cloning systems for their ease of use, cost effectiveness, and rapid prototyping. GreenGate is a modular cloning system catered specifically to designing bespoke, single transcriptional unit vectors for plant transformation-which is also its greatest flaw.

View Article and Find Full Text PDF

Forage maize is a versatile crop extensively utilized for animal nutrition in agriculture and holds promise as a valuable resource for the production of fermentable sugars in the biorefinery sector. Within this context, the carbohydrate fraction of the lignocellulosic biomass undergoes deconstruction during ruminal digestion and the saccharification process. However, the cell wall's natural resistance towards enzymatic degradation poses a significant challenge during both processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!