Host cell manipulation is an important feature of the obligate intracellular parasite Toxoplasma gondii. Recent reports have shown that the tachyzoite stages subvert dendritic cells (DC) as a conduit for dissemination (Trojan horse) during acute infection. To examine the cellular basis of these processes, we performed a detailed analysis of the early events following tachyzoite invasion of human monocyte-derived DC. We demonstrate that within minutes after tachyzoite penetration, profound morphological changes take place in DC that coincide with a migratory activation. Active parasite invasion of DC led to cytoskeletal actin redistribution with loss of adhesive podosome structures and redistribution of integrins (CD18 and CD11c), that concurred with the onset of DC hypermotility in vitro. Inhibition of parasite rhoptry secretion and invasion, but not inhibition of parasite or host cell protein synthesis, abrogated the onset of morphological changes and hypermotility in DC dose-dependently. Also, infected DC, but not by-stander DC, exhibited upregulation of C-C chemokine receptor 7 (CCR7). Yet, the onset of parasite-induced DC hypermotility preceded chemotactic migratory responsesin vitro. Collectively, present data reveal that invasion of DC by T. gondii initiates a series of regulated events, including rapid cytoskeleton rearrangements, hypermotility and chemotaxis, that promote the migratory activation of DC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cmi.12145 | DOI Listing |
Sci Adv
December 2024
Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA.
The nucleus is at the nexus of mechanotransduction and the final barrier for most first line chemotherapeutics. Here, we study the intersection between nuclear-cytoskeletal coupling and chemotherapy nuclear internalization. We find that chronic and acute modulation of intracellular filaments changes nuclear influx of doxorubicin (DOX).
View Article and Find Full Text PDFMicrobiol Res
December 2024
State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China. Electronic address:
The citrus disease Huanglongbing (HLB) in Asia and the US is caused by Candidatus Liberibacter asiaticus (CLas), which is primarily transmitted by Diaphorina citri, also known as Asian citrus psyllid in a persistent and propagative manner. However, the exact mechanisms underlying CLas circulation within D. citri remain largely unclear.
View Article and Find Full Text PDFSci Rep
December 2024
CRBM CNRS UMR 5237, Equipe Cycle Cellulaire, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier, France.
Accurate genome inheritance during cell division relies on a complex chromosome segregation mechanism. This process occurs once all the kinetochores of sister chromatids are attached to microtubules emanating from the opposite poles of the mitotic spindle. To control the precision of this mechanism, the Chromosome Passenger Complex (CPC) actively identifies and corrects improper microtubule attachments.
View Article and Find Full Text PDFCell Struct Funct
December 2024
Graduate School of Arts and Sciences, The University of Tokyo.
The cellular slime mold Dictyostelium discoideum, a member of the Amoebozoa, has been extensively studied in cell and developmental biology. D. discoideum is unique in that they are genetically tractable, with a wealth of data accumulated over half a century of research.
View Article and Find Full Text PDFJ Alzheimers Dis
December 2024
Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA.
Background: Rapidly progressive Alzheimer's disease (rpAD) is a clinical subtype distinguished by its rapid cognitive decline and shorter disease duration. rpAD, like typical AD (tAD), is characterized by underlying neuropathology of amyloid plaques and neurofibrillary tangles. There is early evidence that the composition of amyloid plaques could vary between the rpAD and tAD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!