A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep impact of the template on molecular weight, structure, and oxidation state of the formed polyaniline. | LitMetric

In this work we find that polyaniline (PANI), synthesized by aniline chemical polymerization at a surface of template polycarbonate (PC) particles, is significantly different in molecular weight, structural order, oxidation state, and conductivity from a neat PANI. Molecular weight of the PANI phase in the composite (Mw = 158,000) is 1.6 times higher than that of the neat PANI synthesized in the absence of the template particles. Moreover, XRD analysis shows that crystallinity of the PANI phase in the composite is three times higher than that of the neat PANI. Raman spectroscopy indicates that the oxidation level of PANI in the PC/PANI composite is lower than that of the neat PANI. These noticeable changes of the PANI phase properties suggest specific interactions of reagents in the polymerization medium and formed PANI with the template phase as well as an orientation effect of the latter surface. FTIR spectroscopy reveals that hydrogen bonding in the neat doped PANI is weaker than one between -NH- of PANI and C═O of PC at their interface. The discovered differences are supported by the fact that conductivity of the PANI phase in the composite is more than three times higher than that of the neat PANI.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp311898vDOI Listing

Publication Analysis

Top Keywords

neat pani
20
pani phase
16
pani
14
molecular weight
12
phase composite
12
times higher
12
higher neat
12
oxidation state
8
pani synthesized
8
composite three
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!