Cancer epigenetics: new therapies and new challenges.

J Drug Deliv

Department of Haematology, University Hospital of Ioannina, St. Niarchou Avenue, 45110 Ioannina, Greece ; Computational Medicine Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.

Published: March 2013

Cancer is nowadays considered to be both a genetic and an epigenetic disease. The most well studied epigenetic modification in humans is DNA methylation; however it becomes increasingly acknowledged that DNA methylation does not work alone, but rather is linked to other modifications, such as histone modifications. Epigenetic abnormalities are reversible and as a result novel therapies that work by reversing epigenetic effects are being increasingly explored. The biggest clinical impact of epigenetic modifying agents in neoplastic disorders thus far has been in haematological malignancies, and the efficacy of DNMT inhibitors and HDAC inhibitors in blood cancers clearly attests to the principle that therapeutic modification of the cancer cell epigenome can produce clinical benefit. This paper will discuss the most well studied epigenetic modifications and how these are linked to cancer, will give a brief overview of the clinical use of epigenetics as biomarkers, and will focus in more detail on epigenetic drugs and their use in solid and blood cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3600296PMC
http://dx.doi.org/10.1155/2013/529312DOI Listing

Publication Analysis

Top Keywords

well studied
8
studied epigenetic
8
dna methylation
8
blood cancers
8
epigenetic
7
cancer
4
cancer epigenetics
4
epigenetics therapies
4
therapies challenges
4
challenges cancer
4

Similar Publications

Bulk properties of two-phase systems comprising methane and liquid p-xylene were derived experimentally using neutron imaging and theoretically predicted using molecular dynamics (MD). The measured and predicted methane diffusivity in the liquid, Henry's law constant, apparent molar volume, and surface tension compared well within the experimentally studied conditions (273.15 to 303.

View Article and Find Full Text PDF

Poplar transformation with variable explant sources to maximize transformation efficiency.

Sci Rep

January 2025

Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.

For decades, Agrobacterium tumefaciens-mediated plant transformation has played an integral role in advancing fundamental and applied plant biology. The recent omnipresent emergence of synthetic biology, which relies on plant transformation to manipulate plant DNA and gene expression for novel product biosynthesis, has further propelled basic as well as applied interests in plant transformation technologies. The strong demand for a faster design-build-test-learn cycle, the essence of synthetic biology, is, however, still ill-matched with the long-standing issues of high tissue culture recalcitrance and low transformation efficiency of a wide range of plant species especially food, fiber and energy crops.

View Article and Find Full Text PDF

Background: Although pentatricopeptide repeat domain 1 (PTCD1) has been found to modulate mitochondrial metabolic and oxidative phosphorylation, its contribution in the growth of clear cell renal cell carcinoma (ccRCC) remains unknown.

Methods: The Cancer Genome Atlas (TCGA) dataset was utilized to examine the transcriptional alterations, patient characteristics, clinical outcomes, as well as pathway activation of PTCD1. The Weighted Gene Co-expression Network Analysis (WGCNA) was performed to investigate potential genes that associated with PTCD1.

View Article and Find Full Text PDF

Among the Poly(ADP-ribose) Polymerase (PARP) family in mammals, PARP1 is the first identified and well-studied member that plays a critical role in DNA damage repair and has been proven to be an effective target for cancer therapy. Here, we have reviewed not only the role of PARP1 in different DNA damage repair pathways, but also the working mechanisms of several PARP inhibitors (PARPi), inhibiting Poly-ADP-ribosylation (PARylation) processing and PAR chains production to trap PARP1 on impaired DNA and inducing Transcription- replication Conflicts (TRCs) by inhibiting the PARP1 activity. This review has systematically summarized the latest clinical application of six authorized PARPi, including olaparib, rucaparib, niraparib, talazoparib, fuzuloparib and pamiparib, in monotherapy and combination therapies with chemotherapy, radiotherapy, and immunotherapy, in different kinds of cancer.

View Article and Find Full Text PDF

Notably, the C-X-C Motif Chemokine Ligand 12/C-X-C Chemokine Receptor Type 4 (CXCL12/CXCR4) signalling pathway's activation is markedly increased in a mouse model of abdominal aortic aneurysms (AAA). Nonetheless, the precise contribution of this pathway to AAA development remains to be elucidated. The AAA mouse model was induced by local incubation with elastase and oral administration of β-aminopropionitrile.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!