Elevated levels of type I interferon (IFN) during type 1 diabetes mellitus (T1D) are associated with a defective immune response. In the present study, we investigated whether blocking type I IFN signaling during streptozotocin- (STZ-) induced T1D in mice improves lymphocyte proliferation and escape from continuous apoptosis. Three groups of mice were examined: diabetic mice, type I IFN signaling-incompetent diabetic mice, and control nondiabetic mice. We first found that diabetes induction was accompanied by an elevation in the plasma levels of reactive oxygen species (ROS), hydroperoxide, malondialdehyde (MDN), and the proinflammatory cytokines IL-1 α, IL-1 β, IL-6, and CXCL10. Blocking type 1 IFN signaling in diabetic mice significantly decreased the levels of oxidative stress and proinflammatory cytokines. In addition, lymphocytes from diabetic mice exhibited a marked reduction in their proliferative capacity, increased apoptosis, upregulation of the exhaustion marker PD-1, and aberrant phosphorylation of STAT1, STAT2, AKT and I κ B- α. Interestingly, following the blocking of type I IFN signaling in diabetic mice, the lymphocytes exhibited restored proliferative capacity, decreased apoptosis, normal expression of PD-1, and normal phosphorylation of STAT1, STAT2, AKT and I κ B- α. Our data suggest that elevated levels of type I IFN during T1D trigger lymphocyte exhaustion and a defective lymphocyte-medicated immune response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3606800PMC
http://dx.doi.org/10.1155/2013/148725DOI Listing

Publication Analysis

Top Keywords

type ifn
20
diabetic mice
20
blocking type
16
ifn signaling
12
type interferon
8
oxidative stress
8
type
8
type diabetes
8
elevated levels
8
levels type
8

Similar Publications

Glia Modulates Immune Responses in the Retina Through Distinct MHC Pathways.

Glia

January 2025

Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland.

Glia antigen-presenting cells (APCs) are pivotal regulators of immune surveillance within the retina, maintaining tissue homeostasis and promptly responding to insults. However, the intricate mechanisms underlying their local coordination and activation remain unclear. Our study integrates an animal model of retinal injury, retrospective analysis of human retinas, and in vitro experiments to gain insights into the crucial role of antigen presentation in neuroimmunology during retinal degeneration (RD), uncovering the involvement of various glial cells, notably Müller glia and microglia.

View Article and Find Full Text PDF

Infectious bursal disease virus affecting interferon regulatory factor 7 signaling through VP3 protein to facilitate viral replication.

Front Cell Infect Microbiol

January 2025

Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China.

Interferon regulatory factor 7 (IRF7)-mediated type I interferon antiviral response is crucial for regulating the host following viral infection in chickens. Infectious bursal disease virus (IBDV) is a double-stranded RNA virus that induces immune suppression and high mortality rates in chickens aged 3-6 weeks. Previous studies have shown that IBDV infection antagonizes the type I interferon production to facilitate viral replication in the cell, and IRF7 signaling might play an important role.

View Article and Find Full Text PDF

Background: Type I interferonopathies including Aicardi-Goutiéres Syndrome (AGS) represent a heterogeneous group of clinical phenotypes. Herein, we present a Case with combined AGS and Cornelia de Lange Syndrome (CdLS)-a cohesinopathy-with comprehensive analysis of the immune and genomic abnormalities.

Case And Methods: A 20-year old man presented with chilblain lesions and resorption of distal phalanges of fingers and toes, somatic and psychomotor retardation, microcephaly, synophrys, hearing losing and other aberrancies consistent with the phenotype of CdLS.

View Article and Find Full Text PDF

IL-21 signaling promotes IgM B cell proliferation and antibody production via JAK/STAT3 and AKT pathways in early vertebrates.

Dev Comp Immunol

January 2025

Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, South China Normal University, Guangzhou, 510631, China. Electronic address:

IL-21 is a type I cytokine that is produced by activated CD4 T cells and has a significant impact on the growth, survival, and functional activation of B lymphocytes. While IL-21 has been identified in several teleost fish species, its function and associated mechanisms focus on teleost fish B cells remain largely unknown. In this study, we aimed to investigate the effects of IL-21 (OnIL-21) on IgM B cells from Nile tilapia (Oreochromis niloticus), as well as the intracellular signaling transduction pathway involved.

View Article and Find Full Text PDF

In situ immunization (ISI) has emerged as a promising approach to bolster early phases of the cancer immunity cycle through improved T cell priming. One class of ISI agents, oncolytic viruses (OVs), has demonstrated clinical activity, but overall benefit remains limited. Mounting evidence suggests that due to their inherent vulnerability to antiviral effects of type I interferon (IFN), OVs have limited activity in solid tumors expressing stimulator of interferon genes (STING) and/or retinoic acid-inducible gene I (RIG-I).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!