Nigella sativa and Its Protective Role in Oxidative Stress and Hypertension.

Evid Based Complement Alternat Med

Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia ; Department of Clinical Oral Biology (Pharmacology), Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia.

Published: March 2013

Hypertension increases the risk for a variety of cardiovascular diseases, including stroke, coronary artery disease, heart failure, and peripheral vascular disease. The increase in oxidative stress has been associated with the pathogenesis of hypertension. Increase of blood pressure is due to an imbalance between antioxidants defence mechanisms and free radical productions. Excessive production of reactive oxygen species reduces nitric oxide bioavailability leading to an endothelial dysfunction and a subsequent increase in total peripheral resistance. Hypertension can cause few symptoms until it reaches the advanced stage and poses serious health problems with lifelong consequences. Hypertensive patients are required to take drugs for life to control the hypertension and prevent complications. Some of these drugs are expensive and may have adverse reactions. Hence, it is timely to examine scientifically, complimentary therapies that are more effective and with minimal undesirable effects. Nigella sativa (NS) and its active constituents have been documented to exhibit antioxidant, hypotensive, calcium channel blockade and diuretic properties which may contribute to reduce blood pressure. This suggests a potential role of NS in the management of hypertension, and thus more studies should be conducted to evaluate its effectiveness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3606739PMC
http://dx.doi.org/10.1155/2013/120732DOI Listing

Publication Analysis

Top Keywords

nigella sativa
8
oxidative stress
8
blood pressure
8
hypertension
6
sativa protective
4
protective role
4
role oxidative
4
stress hypertension
4
hypertension hypertension
4
hypertension increases
4

Similar Publications

Characterization of Composites from Post-Consumer Polypropylene and Oilseed Pomace Fillers.

Polymers (Basel)

December 2024

Department of Technology and Entrepreneurship in Wood Industry, Institute of Wood Sciences and Furniture, Warsaw University of Life Sciences-SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland.

This study investigates the properties of composites produced using post-consumer polypropylene (PP) reinforced with lignocellulosic fillers from (black cumin) and rapeseed pomace. Using agri-food by-products like pomace supports waste management efforts and reduces the demand for wood in wood-plastic composites. The composite production method combined extrusion and hot flat pressing.

View Article and Find Full Text PDF

Endophytic microbes in medicinal plants often possess beneficial traits for plant health. This study focuses on the bacterial endophyte strain B.L.

View Article and Find Full Text PDF

Molecular Mechanisms and Signaling Pathways Underlying the Therapeutic Potential of Thymoquinone Against Colorectal Cancer.

Molecules

December 2024

Department of Biology, Chemistry, and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates.

Thymoquinone (TQ), a bioactive compound derived from , has garnered significant attention for its potential as a natural anti-cancer agent, particularly in the context of colorectal cancer. This review provides a detailed synthesis of the current literature on the anti-cancer properties of TQ in colorectal cancer cells, exploring both in vitro and in vivo studies to elucidate its mechanisms of action. TQ effectively induces apoptosis, inhibits cell proliferation, and reduces metastasis in colorectal cancer cells by modulating key molecular pathways such as PI3K/AKT/mTOR, NF-κB, STAT3, and MAPK.

View Article and Find Full Text PDF

(NS) is an annual herb belonging to the Ranunculaceae family, also known as black cumin or black seed. This plant has been used since ancient times due to its therapeutic properties and has proven effective in gastrointestinal, respiratory, cardiovascular, infectious, and inflammatory conditions. In this review, the aim is to highlight the therapeutic effects of the plant known in Arab countries as "the plant that cures any disease", which are provided by the phytochemical compounds in its composition, such as thymoquinone, p-cymene, α-thujene, longifolene, β-pinene, α-pinene, and carvacrol.

View Article and Find Full Text PDF

Colitis, an inflammatory condition of the colon that encompasses ulcerative colitis (UC) and Crohn's disease, presents significant challenges due to the limitations and side effects of current treatments. This study investigates the potential of natural products, specifically AH and NSO, as organic therapeutic agents for colitis. Molecular docking studies were conducted to identify the binding affinities and interaction mechanisms between the bioactive compounds in AH and NSO and proteins implicated in colitis, such as those involved in inflammation and oxidative stress pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!