Modulation of tumor immunity by soluble and membrane-bound molecules at the immunological synapse.

Clin Dev Immunol

Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins no. 340, Santiago 8331010, Chile.

Published: July 2013

To circumvent pathology caused by infectious microbes and tumor growth, the host immune system must constantly clear harmful microorganisms and potentially malignant transformed cells. This task is accomplished in part by T-cells, which can directly kill infected or tumorigenic cells. A crucial event determining the recognition and elimination of detrimental cells is antigen recognition by the T cell receptor (TCR) expressed on the surface of T cells. Upon binding of the TCR to cognate peptide-MHC complexes presented on the surface of antigen presenting cells (APCs), a specialized supramolecular structure known as the immunological synapse (IS) assembles at the T cell-APC interface. Such a structure involves massive redistribution of membrane proteins, including TCR/pMHC complexes, modulatory receptor pairs, and adhesion molecules. Furthermore, assembly of the immunological synapse leads to intracellular events that modulate and define the magnitude and characteristics of the T cell response. Here, we discuss recent literature on the regulation and assembly of IS and the mechanisms evolved by tumors to modulate its function to escape T cell cytotoxicity, as well as novel strategies targeting the IS for therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3606757PMC
http://dx.doi.org/10.1155/2013/450291DOI Listing

Publication Analysis

Top Keywords

immunological synapse
12
cells
5
modulation tumor
4
tumor immunity
4
immunity soluble
4
soluble membrane-bound
4
membrane-bound molecules
4
molecules immunological
4
synapse circumvent
4
circumvent pathology
4

Similar Publications

Biomolecular condensation has emerged as a general principle in organizing biological processes, including immune response. Xu and colleagues recently reported that the cytoplasmic tail of the CD3ɛ subunit of TCR complex, when fused to CAR, can promote CAR condensation by liquid-liquid phase separation. Through sequence engineering, the authors identified modified CD3ɛ sequences that enhance the maturation of the immunological synapse and co-receptor signaling, leading to an improvement of cytotoxicity in vitro and anti-tumor effects in mouse xenograft models.

View Article and Find Full Text PDF

Objective: There has been a call for neuroscientific studies of spiritual experiences due to their global prevalence, significant impact, and importance for understanding the mind-brain problem. Mediumship is a spiritual experience where individuals claim to communicate with or be influenced by deceased persons or non-material entities. We assessed whether mediums possess specific genetic alterations.

View Article and Find Full Text PDF

T-cell receptor recognition of cognate peptide-MHC leads to the formation of signalling domains and the immunological synapse. Because of the close membrane apposition, there is rapid exclusion of CD45, and therefore LCK activation. Much less is known about whether spatial regulation of the intracellular face dictates LCK activity and TCR signal transduction.

View Article and Find Full Text PDF

Analyzing the cell interface is of paramount importance in understanding how cells interact and communicate with other cells, but an advanced analytical platform that can process complex and networked interactions between cell surface ligands and receptors is lacking. Herein, we developed the cell-interface-deciphering lipid nanotablet (CID-LNT) for multiplexed real-time cell analysis. LNT is a nanoparticle-tethered lipid bilayer chip where freely diffusing plasmonic nanoparticles induce scattering signal changes.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR)-T cell therapy represents a breakthrough for the treatment of hematological malignancies. However, to treat solid tumors and certain hematologic cancers, next-generation CAR-T cells require further genetic modifications to overcome some of the current limitations. Improving manufacturing processes to preserve cell health and function of edited T cells is equally critical.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!