The development of a functional tissue requires coordination of the amplification of progenitors and their differentiation into specific cell types. The molecular basis for this coordination during myotome ontogeny is not well understood. Dermomytome progenitors that colonize the myotome first acquire myocyte identity and subsequently proliferate as Pax7-expressing progenitors before undergoing terminal differentiation. We show that the dynamics of sonic hedgehog (Shh) signaling is crucial for this transition in both avian and mouse embryos. Initially, Shh ligand emanating from notochord/floor plate reaches the dermomyotome, where it both maintains the proliferation of dermomyotome cells and promotes myogenic differentiation of progenitors that colonized the myotome. Interfering with Shh signaling at this stage produces small myotomes and accumulation of Pax7-expressing progenitors. An in vivo reporter of Shh activity combined with mouse genetics revealed the existence of both activator and repressor Shh activities operating on distinct subsets of cells during the epaxial myotomal maturation. In contrast to observations in mice, in avians Shh promotes the differentiation of both epaxial and hypaxial myotome domains. Subsequently, myogenic progenitors become refractory to Shh; this is likely to occur at the level of, or upstream of, smoothened signaling. The end of responsiveness to Shh coincides with, and is thus likely to enable, the transition into the growth phase of the myotome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3621491PMC
http://dx.doi.org/10.1242/dev.092726DOI Listing

Publication Analysis

Top Keywords

pax7-expressing progenitors
8
shh
8
shh signaling
8
progenitors
6
myotome
5
transition differentiation
4
differentiation growth
4
growth dermomyotome-derived
4
dermomyotome-derived myogenesis
4
myogenesis depends
4

Similar Publications

Skeletal muscle regeneration in adults is predominantly driven by satellite cells. Loss of satellite cell pool and function leads to skeletal muscle wasting in many conditions and disease states. Here, we demonstrate that the levels of fibroblast growth factor-inducible 14 (Fn14) are increased in satellite cells after muscle injury.

View Article and Find Full Text PDF

Elevated EBF2 in mouse but not pig drives the progressive brown fat lineage specification via chromatin activation.

J Adv Res

December 2024

College of Animal Science, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Shandong Agricultural University, Taian, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China. Electronic address:

Brown adipose tissue (BAT) is responsible for non-shivering thermogenesis, but it is absent in some mammals, including pigs. During development, BAT progenitors are derived from paired box 7 (Pax7)-expressing somitic mesodermal stem cells, which also give rise to skeletal muscle. However, the intrinsic mechanisms underlying the fate decisions between brown fat and muscle progenitors remain elusive across species.

View Article and Find Full Text PDF

Migration and differentiation of muscle stem cells are coupled by RhoA signalling during regeneration.

Open Biol

September 2023

Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, London SE1 9RT, UK.

Article Synopsis
  • Skeletal muscle regeneration relies on migratory muscle stem cells (muSCs) that must respond appropriately to injury to generate muscle progenitor cells.* -
  • The study utilized zebrafish to investigate how muSC migration, behavior, and fate are influenced by cell adhesion and environmental forces.* -
  • Findings indicate that the RhoA kinase ROCK regulates muSC migration and differentiation, with impaired ROCK activity leading to altered cell behavior and muscle regeneration.*
View Article and Find Full Text PDF

Skeletal muscle is maintained and repaired by sub-laminar, Pax7-expressing satellite cells. However, recent mouse investigations have described a second myogenic progenitor population that resides within the myofiber interstitium and expresses the transcription factor Twist2. Twist2-expressing cells exclusively repair and maintain type IIx/b muscle fibers.

View Article and Find Full Text PDF

Xenopus laevis tadpoles have a strong regenerative ability and can regenerate their whole tails after tail amputation. Lineage-restricted tissue stem cells are thought to provide sources for the regenerating tissues by producing undifferentiated progenitor cells in response to tail amputation. However, elucidating the behavioral dynamics of tissue stem cells during tail regeneration is difficult because of their rarity, and there are few established methods of isolating these cells in amphibians.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!