A synthetic substrate enables a new colorimetric screen for terpene synthase cyclization activity, facilitating the engineering of these enzymes. Using directed evolution, the thermostability of the sesquiterpene synthase BcBOT2 was increased without the loss of other properties. The technique also enabled rapid optimization of conditions for expression and stabilization in lysate of another terpene synthase, SSCG_02150.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3828198PMC
http://dx.doi.org/10.1002/anie.201301362DOI Listing

Publication Analysis

Top Keywords

terpene synthase
12
directed evolution
8
high-throughput screening
4
screening terpene-synthase-cyclization
4
terpene-synthase-cyclization activity
4
activity directed
4
evolution terpene
4
synthase
4
synthase synthetic
4
synthetic substrate
4

Similar Publications

A terpene synthase gene (mtas) from Menisporopsis theobromae BCC 4162 was heterologously expressed in Aspergillus oryzae NSAR1, resulting in the production of (+)-aristolochene. Mutations were introduced in MtAS at aromatic residues (Y83, F103, F169, and W323) surrounding the active site, which are critical for precursor cyclisation and intermediate stabilisation during aristolochene biosynthesis. Transformants harbouring mutated mtas, specifically F103W, F169A and F169W, produced (2R,4S,5R,7S)-2-hydroxyaristolochene as the major product, along with aristolochene and other tentative metabolites, including germacrene A and sesquiterpenoids.

View Article and Find Full Text PDF

Terpenes are critical components of the floral fragrance component in , synthesized by terpene synthase (TPS). Analysis of the genome and transcriptional data revealed that the gene was significantly up-regulated during flowering periods, showing a strong correlation with the accumulation of aromatic monoterpenes in the floral components of . Consequently, the gene was selected for further analysis.

View Article and Find Full Text PDF

Revealing the roles of solar withering and shaking processes on oolong tea manufacturing from transcriptome and volatile profile analysis.

Food Res Int

February 2025

Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan; Center for Biotechnology, National Taiwan University, Taipei 10672, Taiwan. Electronic address:

Solar and indoor withering in the manufacturing process of semi-fermented oolong tea are crucial for aroma formation. While the processes have been established through accumulated experience, the underlying mechanisms remain largely unknown. This study identified pairs of gene and volatile organic compound (VOC) that were significantly correlated and up-regulated during solar withering and the first shaking, including lipoxygenase 8 (LOX8) with 3-hexenyl iso-butyrate, terpene synthase 2 (TPS2) with β-ocimene and linalool, as well as tryptophan synthase β-subunit 2 (TSB2) with indole.

View Article and Find Full Text PDF

Volatile terpenoids are major substances responsible for the floral and fruity scents of teas. However, little is known about the regulatory mechanisms of terpenoid biosynthesis pathways in tea plants. 'Zhenfeng Yesheng tea' (ZFYS), a distinctive tea tree germplasm resource in Guizhou province, is known for its unique flavor characterized by a mellow taste and a floral aroma.

View Article and Find Full Text PDF

Ethylene-Mediated Production and Emission of Limonene Influence Brown Planthopper Preference for Rice Plants.

J Agric Food Chem

January 2025

Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

Volatile organic compounds (VOCs) play a key role in plant communication with other organisms in the natural environment. However, the regulatory role of the phytohormone ethylene in volatile production in plants remains unclear. In this study, we demonstrated that the application of an ethylene precursor and amplification of ethylene signaling make rice plants more attractive to brown planthopper (BPH) females for feeding and oviposition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!