ABL1 in thalamus is associated with safety but not fear learning.

Front Syst Neurosci

Sagol Department of Neurobiology, Faculty of Natural Sciences, Center for Gene Manipulation in the Brain, Center for Brain and Behavior, University of Haifa Haifa, Israel.

Published: March 2013

In auditory fear conditioning a tone is paired with a footshock, establishing long lasting fear memory to the tone. In safety learning these stimuli are presented in an unpaired non-overlapping manner and enduring memories to the tone as a safety signal are formed. Although these paradigms utilize the same sensory stimuli different memories are formed leading to distinct behavioral outcome. In this study we aimed to explore whether fear conditioning and safety learning lead to different molecular changes in thalamic area that receives tone and shock inputs. Toward that end, we used antibody microarrays to detect changes in proteins levels in this brain region. The levels of ABL1, Bog, IL1B, and Tau proteins in thalamus were found to be lower in the group trained for safety learning compared to the fear conditioning group 6 h after training. The levels of these proteins were not different between safety learning and fear conditioning trained groups in auditory cortex. Western blot analysis revealed that the ABL1 protein level in thalamus is reduced specifically by safety learning but not fear conditioning when compared to naïve rats. These results show that safety learning leads to activation of auditory thalamus differently from fear conditioning and to a decrease in the level of ABL1 protein in this brain region. Reduction in ABL1 level in thalamus may affect neuronal processes, such as morphogenesis and synaptic efficacy shown to be intimately regulated by changes in this kinase level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3607794PMC
http://dx.doi.org/10.3389/fnsys.2013.00005DOI Listing

Publication Analysis

Top Keywords

fear conditioning
24
safety learning
24
safety
8
fear
8
tone safety
8
brain region
8
learning fear
8
abl1 protein
8
level thalamus
8
learning
7

Similar Publications

Objectives: Endoplasmic reticulum (ER) stress-induced protein homeostasis perturbation is a core pathological element in the pathogenesis of neurodegenerative diseases. This study aims to clarify the unique role played by C/EBP homologous protein (CHOP) as a biomarker of the unfolded protein response (UPR) in the etiology of chronic pain and related cognitive impairments following chronic constrictive nerve injury (CCI).

Methods: The memory capability following CCI was assessed utilizing the Morris water maze (MWM) and fear conditioning test (FCT).

View Article and Find Full Text PDF

Anxiety disorders are one of the top contributors to psychiatric burden worldwide. Recent years have seen a dramatic rise in the potential anxiolytic properties ascribed to cannabidiol (CBD), a non-intoxicating constituent of the Cannabis Sativa plant. This has led to several clinical trials underway to examine the therapeutic potential of CBD for anxiety disorders.

View Article and Find Full Text PDF

Although behavioral avoidance is observed among those with heightened contamination concerns, the extent to which such avoidance is best predicted by state and/or trait characteristics is unclear. Furthermore, while disgust proneness is a disease-specific trait that has been shown to predict avoidance among those with symptoms of contamination-based obsessive-compulsive disorder (OCD), it is unclear if other disease-specific traits may also serve a similar function. In the present study, contamination-fearful participants (N = 89) first completed self-report measures of disease-specific (disgust proneness, health anxiety, perceived vulnerability to disease) and disease-nonspecific (intolerance of uncertainty, trait anxiety) traits.

View Article and Find Full Text PDF

Pattern recognition analysis in brain research has improved understanding of sensory processing and led to the identification of default brain networks in neuroimaging studies. The current study uses pattern recognition analysis to extend our previous findings showing conditioned fear learning and novelty-exposure (i.e.

View Article and Find Full Text PDF

Cd99l2 regulates excitatory synapse development and restrains immediate-early gene activation.

Cell Rep

January 2025

Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea; Transplantation Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea. Electronic address:

Cd99 molecule-like 2 (Cd99l2) is a type I transmembrane protein that plays a role in the transmigration of leukocytes across vascular endothelial cells. Despite its high expression in the brain, the role of Cd99l2 remains elusive. We find that Cd99l2 is expressed primarily in neurons and positively regulates neurite outgrowth and the development of excitatory synapses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!