Cyanobacteria are a rich source of vast array of bioactive molecules including toxins with wide pharmaceutical importance. They show varied bioactivities like antitumor, antiviral, antibacterial, antifungal, antimalarial, antimycotics, antiproliferative, cytotoxicity, immunosuppressive agents and multi-drug resistance reversers. A number of techniques are now developed and standardized for the extraction, isolation, detection and purification of cyanobacterial bioactive molecules. Some of the compounds are showing interesting results and have successfully reached to phase II and phase III of clinical trials. These compounds also serve as lead compounds for the development of synthetic analogues with improved bioactivity. Cyanobacterial bioactive molecules hold a bright and promising future in scientific research and great opportunity for drug discovery. This review mainly focuses on anticancerous, antiviral and antibacterial compounds from cyanobacteria; their clinical status; extraction and detection techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10482-013-9898-0 | DOI Listing |
EXCLI J
November 2024
Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43B, 07100 Sassari, Italy.
The p53-MDM2 pathway plays a crucial role regulating tumor suppression and is a focal point of cancer research. This literature review delves into the complex interplay between the tumor suppressor protein p53 and its main regulator MDM2, highlighting their interaction and implications in cancer development and progression. The review compiles and summarizes the existing understanding of the biology and regulation of p53 and MDM2, emphasizing their roles in various cellular processes, including cell cycle regulation, DNA repair, apoptosis, and metabolism.
View Article and Find Full Text PDFThe relentless emergence of antibiotic-resistant pathogens, particularly Gram-negative bacteria, highlights the urgent need for novel therapeutic interventions. Drug-resistant infections account for approximately 5 million deaths annually, yet the antibiotic development pipeline has largely stagnated. Venoms, representing a remarkably diverse reservoir of bioactive molecules, remain an underexploited source of potential antimicrobials.
View Article and Find Full Text PDFChem Asian J
January 2025
IICT CSIR: Indian Institute of Chemical Technology, Organic Synthesis & Process Chemistry, Tarnaka, 500007, Hyderabad, INDIA.
A ferrocene-catalyzed cyanoalkylsulfonylative radical cascade cyclization of aryl 1,6-diynes using cycloketone oxime esters and DABCO.(SO₂)₂ (DABSO) is reported. The reaction proceeds with notable chemo- and regioselectivity, without requiring additional oxidants or reductants.
View Article and Find Full Text PDFArch Pharm (Weinheim)
January 2025
Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Sesto Fiorentino, Firenze, Italy.
2,2'-Thio-bis(4,6-dichlorophenol), namely bithionol, is a small molecule endowed with a multifaceted bioactivity. Its peculiar polychlorinated phenolic structure makes it a suitable candidate to explore its potentialities in establishing interaction patterns with enzymes of MedChem interest, such as the human carbonic anhydrase (hCA) metalloenzymes. Herein, bithionol was tested on a panel of specific hCAs through the stopped-flow technique, showing a promising micromolar inhibitory activity for the hCA II isoform.
View Article and Find Full Text PDFSci Rep
January 2025
Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
In a quest to innovate biologically active molecules, the benzoylation of 4,6-dimethylpyrimidine-2-thiol hydrochloride (1) with benzoyl chloride derivatives was employed to produce a series of pyrimidine benzothioate derivatives (2-5). Subsequent sulfoxidation of these derivatives (2-5) using hydrogen peroxide and glacial acetic acid yielded a diverse array of pyrimidine sulfonyl methanone derivatives (6-9). In parallel, the sulfoxidation of pyrimidine sulfonothioates (10-12) yielded sulfonyl sulfonyl pyrimidines (13-15), originating from the condensation of compound 1 with sulfonyl chloride derivatives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!