Development of temporally refined land-use regression models predicting daily household-level air pollution in a panel study of lung function among asthmatic children.

J Expo Sci Environ Epidemiol

Air Health Science Division, Water Air and Climate Change Bureau, Health Canada, 269 Laurier Avenue West, Ottawa, Ontario, Canada K1A 0K9.

Published: October 2013

Regulatory monitoring data and land-use regression (LUR) models have been widely used for estimating individual exposure to ambient air pollution in epidemiologic studies. However, LUR models lack fine-scale temporal resolution for predicting acute exposure and regulatory monitoring provides daily concentrations, but fails to capture spatial variability within urban areas. This study coupled LUR models with continuous regulatory monitoring to predict daily ambient nitrogen dioxide (NO(2)) and particulate matter (PM(2.5)) at 50 homes in Windsor, Ontario. We compared predicted versus measured daily outdoor concentrations for 5 days in winter and 5 days in summer at each home. We also examined the implications of using modeled versus measured daily pollutant concentrations to predict daily lung function among asthmatic children living in those homes. Mixed effect analysis suggested that temporally refined LUR models explained a greater proportion of the spatial and temporal variance in daily household-level outdoor NO(2) measurements compared with daily concentrations based on regulatory monitoring. Temporally refined LUR models captured 40% (summer) and 10% (winter) more of the spatial variance compared with regulatory monitoring data. Ambient PM(2.5) showed little spatial variation; therefore, daily PM(2.5) models were similar to regulatory monitoring data in the proportion of variance explained. Furthermore, effect estimates for forced expiratory volume in 1 s (FEV(1)) and peak expiratory flow (PEF) based on modeled pollutant concentrations were consistent with effects based on household-level measurements for NO(2) and PM(2.5). These results suggest that LUR modeling can be combined with continuous regulatory monitoring data to predict daily household-level exposure to ambient air pollution. Temporally refined LUR models provided a modest improvement in estimating daily household-level NO(2) compared with regulatory monitoring data alone, suggesting that this approach could potentially improve exposure estimation for spatially heterogeneous pollutants. These findings have important implications for epidemiologic studies - in particular, for research focused on short-term exposure and health effects.

Download full-text PDF

Source
http://dx.doi.org/10.1038/jes.2013.1DOI Listing

Publication Analysis

Top Keywords

regulatory monitoring
32
lur models
24
monitoring data
20
temporally refined
16
daily household-level
16
air pollution
12
predict daily
12
refined lur
12
daily
11
land-use regression
8

Similar Publications

Theoretical and practical considerations for validating antigen-specific B cell ImmunoSpot assays.

J Immunol Methods

January 2025

Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA. Electronic address:

Owing to their ability to reliably detect even very rare antigen-specific B cells in cellular isolates such as peripheral blood mononuclear cells (PBMC), and doing so robustly in a high throughput-compatible manner, B cell ELISPOT/FluoroSpot (collectively "B cell ImmunoSpot") tests have become increasingly attractive for immune monitoring in regulated settings. Presently, there are no guidelines for the qualification and validation of B cell ImmunoSpot assay results. Here, we propose such guidelines, building on the experience acquired from T cell ImmunoSpot testing in an environment adhering to the requirements of regulatory bodies yet taking the unique features of B cell assays into account.

View Article and Find Full Text PDF

Dandelion extract suppresses the stem-like properties of triple-negative breast cancer cells by regulating CUEDC2/β-catenin/OCT4 signaling axis.

J Ethnopharmacol

January 2025

Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China. Electronic address:

Ethnopharmacological Relevance: Triple-negative breast cancer (TNBC) represents the most aggressive subtype of breast cancer, featuring a high proportion of cancer stem cells (CSCs) and the poorest clinical outcomes. Taraxacum mongolicum Hand. -Mazz.

View Article and Find Full Text PDF

The integration of genomics into personalized medicine has the potential to transform healthcare by customizing treatments according to individual genetic profiles. This paper examines the diverse applications of genomics, including the identification of disease susceptibility, improvement of diagnostic methods, optimization of drug therapies, and monitoring of treatment responses. It also explores the expanding global market for genetic testing and the increasing implementation of whole-genome sequencing in clinical practice, with a focus on pilot programs that are advancing comprehensive genomic analysis.

View Article and Find Full Text PDF

Natural variation of CTB5 confers cold adaptation in plateau japonica rice.

Nat Commun

January 2025

Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.

During cold acclimation in high-latitude and high-altitude regions, japonica rice develops enhanced cold tolerance, but the underlying genetic basis remains unclear. Here, we identify CTB5, a homeodomain-leucine zipper (HD-Zip) transcription factor that confers cold tolerance at the booting stage in japonica rice. Four natural variations in the promoter and coding regions enhance cold response and transcriptional regulatory activity, enabling the favorable CTB5 allele to improve cold tolerance.

View Article and Find Full Text PDF

Current level, sources, and risk of human exposure to PAHs, PBDEs and PCBs in South American outdoor air: A critical review.

Environ Res

January 2025

Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil. Electronic address:

This study provides comprehensive overview of the current level, sources and human exposure risk to hazardous polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) in South American outdoor air. Research documents were obtainable for only 6 countries within the target period (2014 - 2024). For all contaminants, urban concentrations exceeded that of rural/remote locations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!