Background And Aims: Leaf life span is widely recognized as a key life history trait associated with herbivory resistance, but rigorous comparative data are rare for seedlings. The goal of this study was to examine how light environment affects leaf life span, and how ontogenetic development during the first year may influence leaf fracture toughness, lamina density and stem density that are relevant for herbivory resistance, leaf life span and seedling survival.
Methods: Data from three experiments encompassing 104 neotropical woody species were combined. Leaf life span, lamina and vein fracture toughness, leaf and stem tissue density and seedling survival were quantified for the first-year seedlings at standardized ontogenetic stages in shade houses and common gardens established in gaps and shaded understorey in a moist tropical forest in Panama. Mortality of naturally recruited seedlings till 1 year later was quantified in 800 1-m² plots from 1994 to 2011.
Key Results: Median leaf life span ranged widely among species, always greater in shade (ranging from 151 to >1790 d in the understorey and shade houses) than in gaps (115-867 d), but with strong correlation between gaps and shade. Leaf and stem tissue density increased with seedling age, whereas leaf fracture toughness showed only a weak increase. All these traits were positively correlated with leaf life span. Leaf life span and stem density were negatively correlated with seedling mortality in shade, while gap mortality showed no correlation with these traits.
Conclusions: The wide spectrum of leaf life span and associated functional traits reflects variation in shade tolerance of first-year seedlings among coexisting trees, shrubs and lianas in this neotropical forest. High leaf tissue density is important in enhancing leaf toughness, a known physical defence, and leaf life span. Both seedling leaf life span and stem density should be considered as key functional traits that contribute to seedling survival in tropical forest understoreys.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3736767 | PMC |
http://dx.doi.org/10.1093/aob/mct036 | DOI Listing |
Plant Cell Environ
January 2025
College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, China.
A key feature of stress responses [closely relative to the phytohormone abscisic acid (ABA)] and associated acclimation in plants is the dynamic adjustments and related optimisation of carbohydrate content between sink and source organs. The production of stomata, which consist of a pore between two adjacent guard cells, are central to plant adaptation to changing environment conditions. In this context, ABA is a core modulator of environmentally determined stomatal development.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Faculty of Biotechnology, October University for Modern Sciences & Arts, 6th October City, Egypt.
Background: Magnesium (Mg) is essential for plant growth and development and plays critical roles in physiological and biochemical processes. Mg deficiency adversely affects growth of plants by limiting shoot and root development, disturbing the structure and membranes of the grana, reducing photosynthesis efficiency, and lowering net CO assimilation. The MGT (Magnesium transporter) family is responsible for the absorption and transportation of magnesium in plants.
View Article and Find Full Text PDFBMC Genomics
January 2025
Department of Agricultural and Life Industry, Kangwon National University, Chuncheon, 2434, Republic of Korea.
Background: Plant senescence is the process of physiological maturation of plants and is important for crop yield and quality. Senescence is controlled by several factors, such as temperature and photoperiod. However, the molecular basis by which these genes promote senescence in soybeans is not well understood.
View Article and Find Full Text PDFBot Stud
January 2025
Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan.
Ice plant (Mesembryanthemum crystallinum L.) is a halophyte and an inducible CAM plant. Ice plant seedlings display moderate salt tolerance, with root growth unaffected by 200 mM NaCl treatments, though hypocotyl elongation is hindered in salt-stressed etiolated seedlings.
View Article and Find Full Text PDFCurr Pharm Des
January 2025
Department of Horticulture and Life Science, Yeungnam University, Republic of Korea.
Introduction: Datura stramonium (DS) possesses strong medicinal and therapeutic potential but has been rarely evaluated in this context.
Methods: The present study was intended to evaluate the antioxidant, hepatoprotective, and nephroprotective potential of the crude methanolic leaf extract and ethyl acetate, chloroform, n-hexane, and aqueous fractions of DS in paracetamol-intoxicated rabbits. Paracetamol (2 g/Kg BW) was applied to induce liver and kidney injury in rabbits while the methanolic extract and fractions of DS were applied in the dose range of 150 mg/Kg to 300 mg/Kg body weight for 21 days.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!