Background And Purpose: Although there has been extensive research on the effectiveness of repetitive transcranial magnetic stimulation (rTMS) to improve patients' motor performance after experiencing chronic stroke, explicit findings on the coupling of different rTMS protocols are meager. We designed this sham-controlled randomized study to investigate the potential for a consecutive suppressive-facilitatory TMS protocol to improve motor outcomes after chronic stroke.

Methods: Fifty-four chronic hemiplegic stroke patients were allocated across 4 groups to undergo 20 daily sessions of (1) 1 Hz rTMS over the contralesional primary motor cortex (M1) and then intermittent theta burst stimulation over the ipsilesional M1 (group A); (2) contralesional sham stimulation and then ipsilesional real intermittent theta burst stimulation (group B); (3) contralesional real 1 Hz rTMS and then ipsilesional sham stimulation (group C); or (4) bilateral sham-control procedures (group D). We tested cortical excitability and motor activity assessments at the baseline, postpriming rTMS, and postconsequent rTMS periods.

Results: At post, group A showed greater muscle strength, Fugl-Meyer Assessment (FMA), Wolf Motor Function test, and reaction time improvement in comparison with group B (P<0.001≈0.003) and group C (P=0.001≈0.003). Correlation analyses in group A revealed a close relation between contralesional map area decrement and Wolf Motor Function test gain (P=0.005; r=-0.75), and also revealed ipsilesional map area increment and reaction time decrement (P=0.02; r=-0.87). We detected no such relations in the other 3 groups.

Conclusions: Our clinical trials established an extended timeframe during which conditioning could be safely continued and produced more favorable outcomes in facilitating motor performance and ameliorating interhemispheric imbalance than those obtained from single-course rTMS modulation alone.

Download full-text PDF

Source
http://dx.doi.org/10.1161/STROKEAHA.111.000522DOI Listing

Publication Analysis

Top Keywords

repetitive transcranial
8
transcranial magnetic
8
magnetic stimulation
8
hemiplegic stroke
8
stroke patients
8
intermittent theta
8
theta burst
8
burst stimulation
8
stimulation ipsilesional
8
group contralesional
8

Similar Publications

Repetitive transcranial magnetic stimulation for fibromyalgia: are we there yet?

Pain Rep

February 2025

Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.

Repetitive transcranial magnetic stimulation (rTMS) has increasingly been used to modify cortical maladaptive plastic changes shown to occur in fibromyalgia (FM) and to correlate with symptoms. Evidence for its efficacy is currently inconclusive, mainly due to heterogeneity of stimulation parameters used in trials available to date. Here, we reviewed the current evidence on the use of rTMS for FM control in the format of a narrative review, in which a systematic dissection of the different stimulation parameters would be possible.

View Article and Find Full Text PDF

Acute stress disorder (ASD) is a transient psychiatric disorder that may arise subsequent to abrupt, extreme trauma exposure, and serves as a reliable indicator for the subsequent development of posttraumatic stress disorder (PTSD) (Bryant, 2011; Battle, 2013). It exhibits rapid progression in the aftermath of trauma and persists for a duration of days or weeks (not exceeding one month), manifesting symptoms of dissociation, re-experiencing, avoidance, and hyperarousal (Bielas et al., 2018).

View Article and Find Full Text PDF

Background: Dialectical behavioral therapy (DBT) and repetitive transcranial magnetic stimulation (rTMS) are both effective in treating borderline personality disorder (BPD). Impulsivity and impaired decision-making are prominent features of BPD, and therapeutic interventions targeting these symptoms could lead to significant improvements.

Objective/hypothesis: We hypothesized that intermittent theta burst stimulation (iTBS), a modified rTMS protocol that targets the left dorsolateral prefrontal cortex, would enhance the therapeutic effects of DBT, leading to greater improvements in impulsivity and decision-making compared with sham stimulation.

View Article and Find Full Text PDF

Background: In people with substance use disorders (SUDs), stress-exposure can impair executive function, and increase craving and likelihood of drug-use recurrence. Research shows that acute stressors increase drug-seeking behavior; however, mechanisms underlying this effect are incompletely understood. The Competing Neurobehavioral Decisions System theory posits that persons with SUDs may have hyperactive limbic reward circuitry and hypoactive executive control circuitry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!