In our study we investigated the effect of maternal restraint stress on preimplantation embryo development using a mouse model. We exposed hormonally stimulated (superovulated) and unstimulated (i.e. spontaneously ovulating) mouse females to restraint stress for 30 min three times a day during the preimplantation period. The stress exposure caused significant increase in blood plasma corticosterone concentration. Microscopical evaluation of embryos isolated from spontaneously ovulating females showed that maternal stress significantly increased the proportion of embryos with lower cell numbers (≤32 cells) and decreased the proportion of embryos with higher cell numbers (65-96 cells and 97-128 cells). Moreover maternal restraint stress decreased the cell counts per embryo and per blastocyst. After an additional 24 h in vitro culture we did not find any difference in the embryo distribution or in the cell counts per embryo/blastocyst between embryos isolated from stressed and control mothers. The exposure to restraint stress did not affect the incidence of apoptosis in blastocysts isolated from spontaneously ovulated dams. In gonadotropin stimulated dams, the hormonal treatment itself notably changed embryo distribution (increasing the proportion of degenerated embryos) and increased the occurrence of apoptotic cells. Our results indicate that psychical stress exposure in very early pregnancy can significantly influence the developmental capacity of preimplantation embryos.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4149/gpb_2013010 | DOI Listing |
Am J Vet Res
January 2025
Great Western Exotics, Swindon, United Kingdom.
Objective: To obtain standard reference values of intraocular pressure measured with rebound tonometry in conscious healthy Egyptian vultures (Neophron percnopterus).
Methods: 17 Egyptian vultures presented for a routine health check, involving a full physical examination, blood film examination, Hct, manual total leukocyte count, and plasma biochemistry. 15 animals considered healthy and with no signs of stress underwent an ophthalmic examination, including observation of facial symmetry, adnexa, and direct fundoscopy to screen for ocular disease.
Acta Physiol (Oxf)
February 2025
Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan.
Aim: Chronic stress elevates blood pressure, whereas regular exercise exerts antistress and antihypertensive effects. However, the mechanisms of stress-induced hypertension and preventive effects through exercise remain unknown. Thus, we investigated the molecular basis involved in autonomic blood pressure regulation within the amygdala.
View Article and Find Full Text PDFNeuroscience
January 2025
Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil; Center of Health Sciences, Postgraduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil. Electronic address:
Major depressive disorder (MDD) is a complex neuropsychiatric disorder potentially influenced by factors such as stress and inflammation. Chronic stress can lead to maladaptive brain changes that may trigger immune hyperactivation, contributing to MDD's pathogenesis. While the involvement of inflammation in MDD is well established, the effects of inflammatory preconditioning in animals subsequently exposed to chronic stress remain unclear.
View Article and Find Full Text PDFIntensive Crit Care Nurs
January 2025
Radboud University Medical Center, Department of Intensive Care Medicine, PO Box 9101, 6500 HB Nijmegen, the Netherlands. Electronic address:
Background: Physical restraints are frequently used in ICU patients, while their effects are unclear.
Objective: To explore differences in patient reported mental health outcomes and quality of life between physical restrained and non-physical restrained ICU patients at 3- and 12-months post ICU admission, compared to pre-ICU health status.
Research Methodology/design: Prospective cohort study.
Psychoneuroendocrinology
December 2024
Hotchkiss Brain Institute, Mathison Centre for Mental Health Research and Education, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada. Electronic address:
Management of stress and anxiety is often listed as the primary motivation behind cannabis use. Human research has found that chronic cannabis use is associated with increased basal cortisol levels but blunted neuroendocrine responses to stress. Preclinical research has demonstrated mixed effects of Δ-tetrahydrocannabinol (THC; the psychoactive constituent of cannabis), much of which is suggestive of dose-dependent effects; however, the predominance of this work has employed an injection method to deliver cannabis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!