Although previous studies have investigated the sensitivity of electroencephalography (EEG) and magnetoencephalography (MEG) to detect spikes by comparing simultaneous recordings, there are no published reports that focus on the relationship between spike dipole orientation or sensitivity of scalp EEG/MEG and the "gold standard" of intracranial recording (stereotactic EEG). We evaluated two patients with focal epilepsy; one with lateral temporal focus and the other with insular focus. Two MEG recordings were performed for both patients, each recorded simultaneously with initially scalp EEG, based on international 10-20 electrode placement with additional electrodes for anterior temporal regions, and subsequently stereotactic EEG. Localisation of MEG spike dipoles from both studies was concordant and all MEG spikes were detected by stereotactic EEG. For the patient with lateral temporal epilepsy, spike sensitivity of MEG and scalp EEG (relative to stereotactic EEG) was 55 and 0%, respectively. Of note, in this case, MEG spike dipoles were oriented tangentially to scalp surface in a tight cluster; the angle of the spike dipole to the vertical line was 3.6 degrees. For the patient with insular epilepsy, spike sensitivity of MEG and scalp EEG (relative to stereotactic EEG) was 83 and 44%, respectively; the angle of the spike dipole to the vertical line was 45.3 degrees. For the patient with lateral temporal epilepsy, tangential spikes from the lateral temporal cortex were difficult to detect based on scalp 10-20 EEG and for the patient with insular epilepsy, it was possible to evaluate operculum insular sources using MEG. We believe that these findings may be important for the interpretation of clinical EEG and MEG.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3988277 | PMC |
http://dx.doi.org/10.1684/epd.2013.0554 | DOI Listing |
J Neural Eng
January 2025
Electrical and Computer Engineering Department, New York University, 370 Jay Street, Brooklyn, New York, New York, 10012-1126, UNITED STATES.
This study investigates speech decoding from neural signals captured by intracranial electrodes. Most prior works can only work with electrodes on a 2D grid (i.e.
View Article and Find Full Text PDFEpilepsia
January 2025
Department of Neuropediatrics and Muscular Disorders, Medical Center, Faculty of Medicine University of Freiburg, University of Freiburg, Freiburg im Breisgau, Germany.
Objective: Hypothalamic hamartomas (HHs) are associated with pharmacoresistant epilepsy. Stereotactic radiofrequency thermocoagulation (SRT) shows promise as a disconnecting intervention. Although magnetic resonance imaging (MRI) is typically used to determine the attachment and intervention side, it presents challenges in cases of bilaterally attached HH, where the epileptogenic side is unclear.
View Article and Find Full Text PDFSurg Neurol Int
December 2024
Department of Neurosurgery, University of California, Irvine, Orange, United States.
Background: Stereoelectroencephalography (SEEG) is a common diagnostic surgical procedure for patients with medically refractory epilepsy. We aimed to describe our initial experience with the recently released NeuroOne Evo SEEG electrode product (Zimmer Biomet, Warsaw, IN) and review technical specifications for other currently approved depth SEEG electrodes.
Methods: We performed a record review on the first five patients implanted with NeuroOne Evo SEEG electrode product using the robotic stereotactic assistance robot platform and described our surgical technique in detail.
Front Neurol
December 2024
Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
Background: Stereoelectroencephalography (SEEG), as a minimally invasive method that can stably collect intracranial electroencephalographic information over long periods, has increasingly been applied in the diagnosis and treatment of intractable epilepsy in recent years. Over the past 20 years, with the advancement of materials science and computer science, the application scenarios of SEEG have greatly expanded. Bibliometrics, as a method of scientifically analyzing published literature, can summarize the evolutionary process in the SEEG field and offer insights into its future development prospects.
View Article and Find Full Text PDFVirtual Real
December 2024
Department of Computer Science and Software Engineering, Concordia University, Montreal, Québec Canada.
Epilepsy is a neurological disorder characterized by recurring seizures that can cause a wide range of symptoms. Stereo-electroencephalography (SEEG) is a diagnostic procedure where multiple electrodes are stereotactically implanted within predefined brain regions to identify the seizure onset zone, which needs to be surgically removed or disconnected to achieve remission of focal epilepsy. This procedure is complex and challenging due to two main reasons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!