Background: Ligand-based virtual screening plays a fundamental part in the early drug discovery stage. In a virtual screening, a chemical library is searched for molecules with similar properties to a query molecule by means of a similarity function. The optimal assignment of chemical graphs has proven to be a valuable similarity function for many cheminformatic tasks, such as virtual screening. The optimal assignment assumes all atoms of a query molecule to be equally important, which is not realistic depending on the binding mode of a ligand. The importance of a query molecule's atoms can be integrated in the optimal assignment by weighting the assignment edges. We optimized the edge weights with respect to the virtual screening performance by means of evolutionary algorithms. Furthermore, we propose a visualization approach for the interpretation of the edge weights.

Results: We evaluated two different evolutionary algorithms, differential evolution and particle swarm optimization, for their suitability for optimizing the assignment edge weights. The results showed that both optimization methods are suited to optimize the edge weights. Furthermore, we compared our approach to the optimal assignment with equal edge weights and two literature similarity functions on a subset of the Directory of Useful Decoys using sophisticated virtual screening performance metrics. Our approach achieved a considerably better overall and early enrichment performance. The visualization of the edge weights enables the identification of substructures that are important for a good retrieval of ligands and for the binding to the protein target.

Conclusions: The optimization of the edge weights in optimal assignment methods is a valuable approach for ligand-based virtual screening experiments. The approach can be applied to any similarity function that employs the optimal assignment method, which includes a variety of similarity measures that have proven to be valuable in various cheminformatic tasks. The proposed visualization helps to get a better understanding of the binding mode of the analyzed query molecule.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3639874PMC
http://dx.doi.org/10.1186/1756-0381-6-7DOI Listing

Publication Analysis

Top Keywords

edge weights
28
optimal assignment
28
virtual screening
28
query molecule
12
similarity function
12
assignment
9
edge
8
visualization edge
8
weights optimal
8
assignment methods
8

Similar Publications

A dendritic hexamer acceptor enables 19.4% efficiency with exceptional stability in organic solar cells.

Nat Commun

January 2025

Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, China.

To achieve the commercialization of organic solar cells (OSCs), it is crucial not only to enhance power conversion efficiency (PCE) but also to improve device stability through rational molecular design. Recently emerging giant molecular acceptor (GMA) materials offer various advantages, such as precise chemical structure, high molecular weight (beneficial to film stability under several external stress), and impressive device efficiency, making them a promising candidate. Here, we report a dendritic hexamer acceptor developed through a branch-connecting strategy, which overcomes the molecular weight bottleneck of GMAs and achieves a high production yield over 58%.

View Article and Find Full Text PDF

Parameter Estimation Procedures for Exponential-family Random Graph Models on Count-valued Networks: A Comparative Simulation Study.

Soc Networks

January 2024

Departments of Sociology, Statistics, Computer Science, and EECS, University of California, Irvine, CA, United States.

The exponential-family random graph models (ERGMs) have emerged as an important framework for modeling social networks for a wide variety of relational types. ERGMs for valued networks are less well-developed than their unvalued counterparts, and pose particular computational challenges. Network data with edge values on the non-negative integers (count-valued networks) is an important such case, with examples ranging from the magnitude of migration and trade flows between places to the frequency of interactions and encounters between individuals.

View Article and Find Full Text PDF

Adolescent idiopathic scoliosis (AIS), which typically occurs in patients between the ages of 10 and 18, can be caused by a variety of reasons, and no definitive cause has been found. Early diagnosis of AIS or timely recognition of progression is crucial for the prevention of spinal deformity and the reduction of the risk of surgery or postponement. However, it remains a significant challenge.

View Article and Find Full Text PDF

IMPACT: In-Memory ComPuting Architecture based on Y-FlAsh Technology for Coalesced Tsetlin machine inference.

Philos Trans A Math Phys Eng Sci

January 2025

Microsystems Group, School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.

The increasing demand for processing large volumes of data for machine learning (ML) models has pushed data bandwidth requirements beyond the capability of traditional von Neumann architecture. In-memory computing (IMC) has recently emerged as a promising solution to address this gap by enabling distributed data storage and processing at the micro-architectural level, significantly reducing both latency and energy. In this article, we present In-Memory comPuting architecture based on Y-FlAsh technology for Coalesced Tsetlin machine inference (IMPACT), underpinned on a cutting-edge memory device, Y-Flash, fabricated on a 180 nm complementary metal oxide semiconductor (CMOS) process.

View Article and Find Full Text PDF

Alzheimer's Disease (AD) significantly aggravates human dignity and quality of life. While newly approved amyloid immunotherapy has been reported, effective AD drugs remain to be identified. Here, we propose a novel AI-driven drug-repurposing method, DeepDrug, to identify a lead combination of approved drugs to treat AD patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!