The stabilization of Cr(V) by biological 1,2-diolato ligands, including carbohydrates, glycoproteins, and sialic acid derivatives, is likely to play a crucial role in the genotoxicity of Cr(VI) and has also been implicated in the antidiabetic effect of Cr(III). Previously, such complexes have been observed by electron paramagnetic resonance (EPR) spectroscopy in living cells or animals, treated with carcinogenic Cr(VI), as well as in numerous model systems, but attempts to isolate them have been elusive. Recently, the first crystal structure of a Cr(V) complex with cis-1,2-cyclohexanediol (1, a close structural analogue of carbohydrates) has been reported. In this work, Cr(V) complexes of the general formula [Cr(V)OL2](-) [where LH2 = 1, cis-1,2-cyclopentanediol (2), D-glucose (3), D-mannose (4), D-galactose (5), and D-ribose (6)] have been isolated from light-catalyzed reactions of Cr(VI) (anhydrous Na2Cr2O7) with slight molar excesses of the corresponding ligands in N,N-dimethylformamide. The complexes were characterized by elemental analyses, electrospray mass spectrometry (ESMS), and EPR spectroscopy. Studies by electronic absorption spectroscopy have shown that the solids isolated from reactions of Cr(VI) with 3-6 contained mixtures of Cr(V) complexes (40-65 mol %) and Cr(III) species (probably complexes with oxidized ligands), while those from reactions with 1 and 2 were practically pure Cr(V). The first isolation of solids containing significant proportions of chromium(V) monosaccharide complexes led to the definitive assignment of their general formula ([Cr(V)OL2](-), based on ESMS), in agreement with the earlier EPR spectroscopic data. The first direct comparison of the decomposition rates of Cr(V) complexes with 1-6, made possible by isolation of the solids, have shown that the complexes with five-membered-ring ligands (2 and 6) are more stable at pH ∼ 7 compared with their six-membered-ring counterparts (1 and 3-5). This finding emphasizes the likely biological roles of chromium(V) pentose complexes, e.g., those with sugar residues of RNA, ATP, or NAD(P)H. Finally, the first direct evidence for the ability of these Cr(V) complexes to cause oxidative DNA damage in the absence of added reductants or oxidants has been obtained. These data support significant roles for chromium(V) 1,2-diolato complexes in the diverse biological activities of Cr(VI) and Cr(III).

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic3022408DOI Listing

Publication Analysis

Top Keywords

crv complexes
16
complexes
12
epr spectroscopy
8
general formula
8
formula [crvol2]-
8
reactions crvi
8
isolation solids
8
roles chromiumv
8
crv
7
crvi
5

Similar Publications

PTPN23-dependent ESCRT machinery functions as a cell death checkpoint.

Nat Commun

November 2024

Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA.

Cell death plasticity is crucial for modulating tissue homeostasis and immune responses, but our understanding of the molecular components that regulate cell death pathways to determine cell fate remains limited. Here, a CRISPR screen of acute myeloid leukemia cells identifies protein tyrosine phosphatase non-receptor type 23 (PTPN23) as essential for survival. Loss of PTPN23 activates nuclear factor-kappa B, apoptotic, necroptotic, and pyroptotic pathways by causing the accumulation of death receptors and toll-like receptors (TLRs) in endosomes.

View Article and Find Full Text PDF

The synthesis of Mn and Cr nitride complexes of a pro-radical tetradentate bis-phenol bis-N-heterocyclic carbene ligand H2LC2O2 was investigated. Employing either azide photolysis of the Mn precursor complex MnLC2O2(N3) or a nitride exchange reaction between MnLC2O2(Br) and the nitride exchange reagent Mnsalen(N) failed to provide a useful route to the target nitride MnLC2O2(N). Experimental results support initial formation of the target nitride MnLC2O2(N), however, the nitride rapidly inserts into a Mn-C bond.

View Article and Find Full Text PDF

Efficient removal of contaminants in complex water matrices under mild conditions is highly desirable but still challenging. In this study, we unraveled the overlooked but crucial role of sulfite radical (SO) in the efficient selective reduction of toxic Cr(VI) under near-neutral conditions. Fast removal of Cr(VI) at around pH 7 in sulfite/UV was found to be attributable to high reactivity of SO toward HCrO (∼5.

View Article and Find Full Text PDF

Cysteine-Facilitated Cr(VI) reduction by Fe(II/III)-bearing phyllosilicates: Enhancement from In-Situ Fe(II) generation.

Water Res

December 2024

State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510650, China. Electronic address:

Structural Fe in phyllosilicates represents a crucial and potentially renewable reservoir of electron equivalents for contaminants reduction in aquatic and soil systems. However, it remains unclear how in-situ modification of Fe redox states within Fe-bearing phyllosilicates, induced by electron shuttles such as naturally occurring organics, influences the fate of contaminants. Herein, this study investigated the processes and mechanism of Cr(VI) reduction on two typical Fe(II/III)-bearing phyllosilicates, biotite and chlorite, in the presence of cysteine (Cys) at circumneutral pH.

View Article and Find Full Text PDF

Prediction of additive genetic variances of descendants for complex families based on Mendelian sampling variances.

G3 (Bethesda)

November 2024

Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, P.O. Box 338, 6700 AH Wageningen, The Netherlands.

The ability to predict the outcome of selection and mating decisions enables breeders to make strategically better selection decisions. To improve genetic progress, those individuals need to be selected whose offspring can be expected to show high genetic variance next to high breeding values. Previously published approaches enable to predict the variance of descendants of 2 future generations for up to 4 founding haplotypes, or 2 outbred individuals, based on phased genotypes, allele effects, and recombination frequencies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!