Background: Anaplastic thyroid cancers (ATCs) represent only 1%-2% of all thyroid tumors, but they account for up to 50% of the mortality. Treatment of differentiated thyroid carcinomas is well standardized and the use of radioiodine represents an essential step; in contrast, there is no standardized therapeutic approach for anaplastic tumors and their prognosis is poor. The resistance of ATC to radioiodine treatment is principally due to the absence of expression of the sodium iodide symporter (NIS), mainly due to epigenetic silencing. The acetylation status of histones is involved in the epigenetic control of gene expression and is usually disrupted in advanced thyroid cancer. Histone deacetylase inhibitors have been demonstrated as potent anticancer drugs with several different effects on cell viability and differentiation.
Methods: Stabilized ATC cell lines (BHT-101 and CAL-62) and primary cultures from patients who underwent thyroidectomy for ATC were treated with the histone deacetylase inhibitor LBH589. After treatment, we evaluated the expression and function of NIS. Gene expression was evaluated by real-time polymerase chain reaction (RT-PCR), NIS promoter activity was determined with a luciferase reporter assay, and protein expression was assessed through immunofluorescence. We tested the protein function by (125)I uptake and efflux experiments; finally the cytotoxic effect of (131)I was determined with a clonogenic assay.
Results: Our results demonstrate that treatment with LBH589 leads to NIS RNA expression as shown by RT-PCR and luciferase assay, and to protein expression as determined by immunofluorescence in vitro and by immunohistochemistry in xenograft tumors. Moreover, (125)I uptake and efflux experiments show the correct protein function and iodine retention, which translate into cytotoxicity effects, as demonstrated by a clonogenic assay with (131)I.
Conclusions: This study supplies a new potential strategy for the treatment of ATC by modifying gene expression with the aim of inducing responsiveness towards radioiodine therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/thy.2012.0359 | DOI Listing |
PLoS One
January 2025
Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates.
Epigenetic processes are the critical events in carcinogenesis. Histone modification plays a crucial role in gene expression regulation, where histone deacetylases (HDACs) are key players in epigenetic processes. Inhibiting HDACs has shown promise in modern cancer therapy.
View Article and Find Full Text PDFNeurochem Res
January 2025
Department of Radiology, the Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Road, Wuhua District, Kunming, Yunnan, 650101, PR China.
Objective: Post-resuscitation brain injury is a common sequela after cardiac arrest (CA). Increasing sirtuin1 (SIRT1) has been involved in neuroprotection in oxygen-glucose deprivation (OGD) neurons, and we investigated its mechanism in post-cardiopulmonary resuscitation (CPR) rat brain injury by mediating p65 deacetylation modification to mediate hippocampal neuronal ferroptosis.
Methods: Sprague-Dawley rat CA/CPR model was established and treated with Ad-SIRT1 and Ad-GFP adenovirus vectors, or Erastin.
Background: In Alzheimer's disease (AD), histone acetylation is disrupted, suggesting loss of transcriptional control. Moreover, converging evidence suggests an age- and AD-dependent loss of transcription controlled by all-trans-retinoic acid (ATRA), the bioactive metabolite of vitamin A (VA). Antioxidant depletion causes oxidative stress (OS).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Tulane University, New Orleans, LA, USA.
Background: Alzheimer's Disease (AD) is a prevalent age-related neurodegenerative condition leading to dementia, yet factors regulating its polygenomic etiology and progression remain elusive. MicroRNAs (miRNAs), small RNA molecules regulating protein expression, play a role in neurodegeneration. MicroRNA-34a (miR-34a) is a crucial regulator of numerous genes associated with neurodegenerative disorders, protein aggregation and synaptic transmission genes.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The Neurodegeneration Consortium, UT MD Anderson Cancer Center, Houston, TX, USA.
Background: Chemotherapy-induced cognitive impairment (CICI) is a commonly reported neurotoxic side effect of chemotherapy, occurring in up to 75% cancer patients. Connections between chemo-treatment and increased risk of dementia have been reported. Mechanistically, chemotherapy treatment contributes to an accelerated aging phenotype in the brain through induction of pathogenic tau, disruption of neuronal integrity, reactive gliosis and neuroinflammation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!