Multitarget global sensitivity analysis of n-butanol combustion.

J Phys Chem A

Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA.

Published: May 2013

A model for the combustion of butanol is studied using a recently developed theoretical method for the systematic improvement of the kinetic mechanism. The butanol mechanism includes 1446 reactions, and we demonstrate that it is straightforward and computationally feasible to implement a full global sensitivity analysis incorporating all the reactions. In addition, we extend our previous analysis of ignition-delay targets to include species targets. The combination of species and ignition targets leads to multitarget global sensitivity analysis, which allows for a more complete mechanism validation procedure than we previously implemented. The inclusion of species sensitivity analysis allows for a direct comparison between reaction pathway analysis and global sensitivity analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp312340qDOI Listing

Publication Analysis

Top Keywords

sensitivity analysis
20
global sensitivity
16
multitarget global
8
analysis allows
8
analysis
7
sensitivity
5
analysis n-butanol
4
n-butanol combustion
4
combustion model
4
model combustion
4

Similar Publications

Background: Discussing Advance Care Planning (ACP) with people living with dementia (PwD) is challenging due to topic sensitivity, fluctuating mental capacity and symptom of forgetfulness. Given communication difficulties, the preferences and expectations expressed in any ACP may reflect family and healthcare professional perspectives rather than the PwD. Starting discussions early in the disease trajectory may avoid this, but many PwD may not be ready at this point for such discussions.

View Article and Find Full Text PDF

Relationship between CTF1 gene expression and prognosis and tumor immune microenvironment in glioma.

Eur J Med Res

January 2025

Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China.

Objective: This study aimed to evaluate CTF1 expression in glioma, its relationship to patient prognosis and the tumor immune microenvironment, and effects on glioma phenotypes to identify a new therapeutic target for treating glioma precisely.

Methods: We initially assessed the expression of CTF1, a member of the IL-6 family, in glioma, using bioinformatics tools and publicly available databases. Furthermore, we examined the correlation between CTF1 expression and tumor prognosis, DNA methylation patterns, m6A-related genes, potential biological functions, the immune microenvironment, and genes associated with immune checkpoints.

View Article and Find Full Text PDF

Trials were inconsistent while reporting findings on the benefits of the intermittent regimen. Recent conclusive evidence to show overall effect was limited. This review compared intermittent and daily iron folic acid supplementation (IFAS) on pregnancy outcomes.

View Article and Find Full Text PDF

Ultrafast enzyme-responsive hydrogel for real-time assessment and treatment optimization in infected wounds.

J Nanobiotechnology

January 2025

Department of Laboratory Medicine Center, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China.

Monitoring wound infection and providing appropriate treatment are crucial for achieving favorable outcomes. However, the time-consuming nature of laboratory culture tests may delay timely intervention. To tackle this challenge, a simple yet effective HDG hydrogel, composed of hydrogen peroxide (H₂O₂), dopamine, and GelMA polymer, is developed for the ultrafast detection and treatment of Staphylococcus aureus (SA) infections.

View Article and Find Full Text PDF

Dynamic EIT technology for real-time non-invasive monitoring of acute pulmonary embolism: a porcine model experiment.

Respir Res

January 2025

Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Department of Biomedical Engineering, Air Force Medical University, Xi'an, 710032, China.

Background: Acute pulmonary embolism represents the third most prevalent cardiovascular pathology, following coronary heart disease and hypertension. Its untreated mortality rate is as high as 20-30%, which represents a significant threat to patient survival. In view of the current lack of real-time monitoring techniques for acute pulmonary embolism, this study primarily investigates the potential of the pulsatility electrical impedance tomography (EIT) technique for the detection and real-time monitoring of acute pulmonary embolism through the collection and imaging of the pulsatile signal of pulmonary blood flow.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!