A challenge in using plasmonic nanostructure-drug conjugates for thermo-chemo combination cancer therapy lies in the huge size discrepancy; the size difference can critically differentiate their biodistributions and hamper the synergistic effect. Properly tuning the plasmonic wavelength for photothermal therapy typically results in the nanostructure size reaching ∼100 nm. We report a new combination cancer therapy platform that consists of relatively small 10 nm pH-responsive spherical gold nanoparticles and conjugated doxorubicins. They are designed to form aggregates in mild acidic environment such as in a tumor. The aggregates serve as a photothermal agent that can selectively exploit external light by their collective plasmon modes. Simultaneously, the conjugated doxorubicins are released. The spatiotemporal concertion is confirmed at the subcellular, cellular, and organ levels. Both agents colocalize in the cell nuclei. The conjugates accumulate in cancer cells by the rapid phagocytic actions and effective blockage of exocytosis by the increased aggregate size. They also effectively accumulate in tumors up to 17 times over the control because of the enhanced permeation and retention. The conjugates exhibit a synergistic effect enhanced by nearly an order of magnitude in cellular level. The synergistic effect is demonstrated by the remarkable reductions in both the therapeutically effective drug dosage and the photothermal laser threshold. Using an animal model, effective tumor growth suppression is demonstrated. The conjugates induce apoptosis to tumors without any noticeable damage to other organs. The synergistic effect in vivo is confirmed by qRT-PCR analysis over the thermal stress and drug-induced growth arrest.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn400223aDOI Listing

Publication Analysis

Top Keywords

cancer therapy
12
gold nanoparticles
8
combination cancer
8
conjugated doxorubicins
8
synergistic
5
ph-responsive assembly
4
assembly gold
4
nanoparticles "spatiotemporally
4
"spatiotemporally concerted"
4
concerted" drug
4

Similar Publications

The therapeutic role of naringenin nanoparticles on hepatocellular carcinoma.

BMC Pharmacol Toxicol

January 2025

Biochemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.

Background: Naringenin, a flavonoid compound found in citrus fruits, possesses valuable anticancer properties. However, its potential application in cancer treatment is limited by poor bioavailability and pharmacokinetics at tumor sites. To address this, Naringenin nanoparticles (NARNPs) were prepared using the emulsion diffusion technique and their anticancer effects were investigated in HepG2 cells.

View Article and Find Full Text PDF

Background: De-intensification of anti-cancer therapy without significantly affecting outcomes is an important goal. Omission of axillary surgery or breast radiation is considered a reasonable option in elderly patients with early-stage breast cancer and good prognostic factors. Data on avoidance of both axillary surgery and radiation therapy (RT) is scarce and inconclusive.

View Article and Find Full Text PDF

Efficacy and cost-effectiveness of an ACT and compassion-based intervention for women with breast cancer: study protocol of two randomised controlled trials {1}.

Trials

January 2025

Center for Research in Neuropsychology and Cognitive and Behavioral Intervention, Faculty of Psychology and Education Sciences, University of Coimbra, Coimbra, Portugal.

Background: Breast cancer is the most diagnosed cancer in women worldwide and carries a considerable psychosocial burden. Interventions based on Acceptance and Commitment Therapy (ACT) and compassion-based approaches show promise in improving adjustment and quality of life in people with cancer. The Mind programme is an integrative ACT and compassion-based intervention tailored for women with breast cancer, which aims to prepare women for survivorship by promoting psychological flexibility and self-compassion.

View Article and Find Full Text PDF

Background: Tumor microenvironment (TME) plays a crucial role in tumor growth and metastasis. Exploring biomarkers that are significantly associated with TME can help guide individualized treatment of patients.

Methods: We analyzed the expression and survival of P4HB in pan-cancer through the TCGA database, and verified the protein level of P4HB by the HPA database.

View Article and Find Full Text PDF

New treatment approaches are warranted for patients with advanced melanoma refractory to immune checkpoint blockade (ICB) or BRAF-targeted therapy. We designed BNT221, a personalized, neoantigen-specific autologous T cell product derived from peripheral blood, and tested this in a 3 + 3 dose-finding study with two dose levels (DLs) in patients with locally advanced or metastatic melanoma, disease progression after ICB, measurable disease (Response Evaluation Criteria in Solid Tumors version 1.1) and, where appropriate, BRAF-targeted therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!