Optimized geometries are evaluated for the ground and low lying excited states of cis-stilbene, trans-stilbene, and 4a,4b-dihydrophenanthrene (DHP) from calculations performed with the improved virtual orbital, complete active space configuration interaction (IVO-CASCI) method. The calculations indicate that a nonplanar conformer of trans-stilbene is the most stable among the isomers. The calculated ground and low lying excited state geometries agree well with experiment and with prior theoretical estimates where available. Our IVO-CASCI based multireference Möller-Plesset (MRMP) computations place the (1)B(u) state of trans stilbene to be ∼4.0 eV above the ground X(1)A(g) state, which is in accord with experiment and with earlier theoretical estimates. The 1(1)B(u) state of trans-stilbene can be represented by the highest occupied molecular orbital (HOMO) → lowest unoccupied molecular orbital (LUMO) transition (ionic type) from the ground state, whereas its 2(1)B(u) state is dominated by the HOMO → LUMO+1 and HOMO-1 → LUMO transitions (covalent type). Likewise, the 1(1)B and 2(1)B states of cis-stilbene and DHP are also found to be of ionic and covalent types, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp311493wDOI Listing

Publication Analysis

Top Keywords

excited state
8
ground low
8
low lying
8
lying excited
8
states cis-stilbene
8
theoretical estimates
8
molecular orbital
8
homo →
8
state
7
ground
5

Similar Publications

Developing of molecular crystalline materials with light-induced multiple dynamic deformation in space dimension and photochromism on time scales has attracted much attention for its potential applications in actuators, sensoring and information storage. Nevertheless, organic crystals capable of both photoinduced dynamic effects and static color change are rare, particularly for multi-component cocrystals system. In this study, we first report the construction of charge transfer co-crystals allows their light-induced solid-to-liquid transition and photochromic behaviors to be controlled by trans-stilbene (TSB) as an electron donor and 3,4,5,6-Tetrafluorophthalonitrile (TFP) as an electron acceptor.

View Article and Find Full Text PDF

Correlated spin-wave generation and domain-wall oscillation in a topologically textured magnetic film.

Nat Mater

January 2025

Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA.

Spin waves, or magnons, are essential for next-generation energy-efficient spintronics and magnonics. Yet, visualizing spin-wave dynamics at nanoscale and microwave frequencies remains a formidable challenge due to the lack of spin-sensitive, time-resolved microscopy. Here we report a breakthrough in imaging dipole-exchange spin waves in a ferromagnetic film owing to the development of laser-free ultrafast Lorentz electron microscopy, which is equipped with a microwave-mediated electron pulser for high spatiotemporal resolution.

View Article and Find Full Text PDF

The femtosecond dynamics of energy transfer from light-excited spirilloxanthin (Spx) to bacteriochlorophyll (BChl) a in the reaction centers (RCs) of purple photosynthetic bacteria Rhodospirillum rubrum was studied. According to crio-electron microscopy data, Spx is located near accessory BChl a in the B-branch of cofactors. Spx was excited by 25 fs laser pulses at 490 nm, and difference absorption spectra were recorded in the range 500-700 nm.

View Article and Find Full Text PDF

rTMS improves cognitive function and its real-time and cumulative effect on neuronal excitability in aged mice.

Brain Res

January 2025

Key Laboratory of Digital Medical Engineering of Hebei Province, College of Electronic & Information Engineering, Hebei University, Baoding, Hebei 071002, PR China. Electronic address:

Repetitive transcranial magnetic stimulation (rTMS) is acknowledged for its critical role in modulating neuronal excitability and enhancing cognitive function. The dentate gyrus of the hippocampus is closely linked to cognitive processes; however, the precise mechanisms by which changes in its excitability influence cognition are not yet fully understood. This study aimed to elucidate the effects on granule cell excitability and the effects on cognition of high-frequency rTMS in naturally aging mice, as well as to investigate the potential interactions between these two factors.

View Article and Find Full Text PDF

Trace amine signaling in zebrafish models: CNS pharmacology, behavioral regulation and translational relevance.

Eur J Pharmacol

January 2025

Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg, Russia; Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China. Electronic address:

Tyramine, β-phenylethylamine, octopamine and other trace amines are endogenous substances recently recognized as important novel neurotransmitters in the brain. Trace amines act via multiple selective trace amine-associated receptors (TAARs) of the G protein-coupled receptor family. TAARs are expressed in various brain regions and modulate neurotransmission, neuronal excitability, adult neurogenesis, cognition, mood, locomotor activity and olfaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!