Estimation of scaling-up parameters for a site restoration process using a surfactant-enhanced soil washing (SESW) process followed by the application of advanced oxidation processes (Fenton and photo-Fenton) was performed. For the SESW, different parameters were varied and the soil washing efficiency for pesticide (2,4-D) removal assessed. The resulting wastewater was treated using the Fenton reaction in the absence and presence of ultraviolet (UV) radiation for pesticide removal. Results showed that agitation speed of 1550 rpm was preferable for the best pesticide removal from contaminated soil. It was possible to wash contaminated soils with different soil concentrations; however the power drawn was higher as the soil concentration increased. Complete removal of the pesticide and the remaining surfactant was achieved using different reaction conditions. The best degradation conditions were for the photo-Fenton process using [Fe(II)] = 0.3 mM; [H2O2] = 4.0 mM where complete 2,4-D and sodium dodecylsulfate (SDS) removal was observed after 8 and 10 minutes of reaction, respectively. Further increase in the hydrogen peroxide or iron salt concentration did not show any improvement in the reaction rate. Kinetic parameters, i.e. reaction rate constant and scaling-up parameters, were determined. It was shown that, by coupling both processes (SESW and AOPs), it is possible the restoration of contaminated sites.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2012.696721DOI Listing

Publication Analysis

Top Keywords

scaling-up parameters
12
soil washing
12
parameters site
8
site restoration
8
restoration process
8
process surfactant-enhanced
8
surfactant-enhanced soil
8
pesticide removal
8
reaction rate
8
soil
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!