Peptide aptamers: tools to negatively or positively modulate HSPB1(27) function.

Philos Trans R Soc Lond B Biol Sci

Apoptosis Cancer and Development Laboratory, Lyon Cancer Research Center, Centre Léon Bérard, INSERM U1052-CNRS 5238, University of Lyon, 69008 Lyon, France.

Published: May 2013

Human HSP27 (HSPB1) is a molecular chaperone sensor which, through dynamic changes in its phosphorylation and oligomerization, allows cells to adapt to changes in their physiology and/or mount a protective response to injuries. In pathological conditions, the high level of HSPB1 expression can either be beneficial, such as in diseases characterized by cellular degenerations, or be malignant in cancer cells where it promotes tumourigenesis, metastasis and anti-cancer drug resistance. Structural changes allow HSPB1 to interact with specific client protein partners in order to modulate their folding/activity and/or half-life. Therefore, the search is open for therapeutic compounds aimed at either down- or upregulating HSPB1 activity. In this respect, we have previously described two peptide aptamers (PA11 and PA50) that specifically interact with HSPB1 small oligomers and decrease its anti-apoptotic and tumourigenic activities. A novel analysis of the different HSPB1-interacting aptamers that were isolated earlier revealed that one aptamer (PA23) has the intriguing ability to stimulate the protective activity of HSPB1. We show here that this aptamer abolishes the dominant negative effect induced by the R120G mutant of αB-crystallin (HSPB5) by disrupting its interaction with HSPB1. Hence, developing structure-based interfering strategies could lead to the discovery of HSPB1-based therapeutic drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3638397PMC
http://dx.doi.org/10.1098/rstb.2012.0075DOI Listing

Publication Analysis

Top Keywords

peptide aptamers
8
hspb1
7
aptamers tools
4
tools negatively
4
negatively positively
4
positively modulate
4
modulate hspb127
4
hspb127 function
4
function human
4
human hsp27
4

Similar Publications

A fluorescent aptasensor was developed based on target-induced hairpin conformation switch coupled with nicking enzyme-assisted signal amplification (NESA) to detect the oligomeric form of ß-amyolid peptide (AβO) in cerebrospinal fluid. The hairpin DNA probe (HP) was specifically designed to recognize AβO. When AβO is present in the sensing system, it induces an HP conformational switch and triggers the NESA reaction.

View Article and Find Full Text PDF

Conquering surface fouling of sensors caused by nonspecific adsorption and accumulation of foulants in a food matrix is of significance in accurate food safety analysis. Herein, an antifouling electrochemical aptasensor based on a Y-shaped peptide and nanoporous gold (NPG) for aflatoxin B1 detection in milk, tofu, and rice flour was proposed. The self-designed Y-shaped peptide involves an anchoring segment (-C), a support structure (-PPPP-), and an antifouling domain with two branches (-EK(KSRE)DER-) inspired by two bioactive peptides.

View Article and Find Full Text PDF

The application of aptamers in the repair of bone, nerve, and vascular tissues.

J Mater Chem B

January 2025

Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, 100044, China.

Aptamers represent a distinct category of short nucleotide sequences or peptide molecules characterized by their ability to bind to specific targets with high precision. These molecules are predominantly synthesized through SELEX (Systematic Evolution of Ligands by Exponential Enrichment) technology. Recent findings indicate that aptamers may have significant applications in regenerative medicine, particularly in the domain of tissue repair.

View Article and Find Full Text PDF

Fibroblast activation protein (FAP) is an important antigen in the tumor microenvironment, which plays a crucial role in promoting extracellular matrix remodeling and tumor cell metastasis. A circulating form of soluble FAP has also been identified in the serum, becoming a biomarker for pan-cancer diagnosis and prognosis. However, the current peptide substrate-based enzymatic activity detection or antibody-dependent detection methods have been hindered by insufficient selectivity and complex operations, so it is valuable to develop effective nucleic acid aptamers as FAP affinity ligands.

View Article and Find Full Text PDF

The recognition of small molecules plays a crucial role in disease diagnosis, environmental assessment, and food safety. Currently, their recognition elements predominantly rely on antibodies and aptamers while suffering from a limitation of the complex screening process due to the low immunogenicity of small molecules. Herein, we present a top-down computational design strategy for molecule recognition peptides (MRPs) for enzyme-peptide self-assembly and chemiluminescence biosensing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!