A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Neuropsychological effects of konzo: a neuromotor disease associated with poorly processed cassava. | LitMetric

Background: Konzo is an irreversible upper-motor neuron disorder affecting children dependent on bitter cassava for food. Although the neuroepidemiology of konzo is well characterized, we report the first neuropsychological findings.

Method: Children with konzo in the Democratic Republic of Congo (mean age 8.7 years) were compared with children without konzo (mean age 9.1 years) on the Kaufman Assessment Battery for Children, second edition (KABC-II), and the Bruininks-Oseretsky Test of Motor Proficiency, second edition (BOT-2). Both groups were also compared with normative KABC measures from earlier studies in a nearby nonkonzo region.

Results: Using a Kruskal-Wallis test, children with konzo did worse on the KABC-II simultaneous processing (visual-spatial analysis) (K [1] = 8.78, P = .003) and mental processing index (MPI) (K [1] = 4.56, P = .03) than children without konzo. Both konzo and nonkonzo groups had poorer KABC sequential processing (memory) and MPI relative to the normative group from a nonkonzo region (K [2] = 75.55, P < .001). Children with konzo were lower on BOT-2 total (K [1] = 83.26, P < .001). KABC-II MPI and BOT-2 total were predictive of konzo status in a binary logistic regression model: odds ratio = 1.41, P < .013; 95% confidence interval 1.13-1.69.

Conclusions: Motor proficiency is dramatically affected, and both children with and without konzo have impaired neurocognition compared with control children from a nonoutbreak area. This may evidence a subclinical neurocognitive form of the disease, extending the human burden of konzo with dramatic public health implications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3608487PMC
http://dx.doi.org/10.1542/peds.2012-3011DOI Listing

Publication Analysis

Top Keywords

children konzo
24
konzo
12
children
9
age years
8
second edition
8
motor proficiency
8
bot-2 total
8
neuropsychological effects
4
effects konzo
4
konzo neuromotor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!