E-Cadherin is a cell:cell adhesion molecule critical for appropriate embryonic and mammary development. In cancer, E-Cadherin has been primarily viewed as being lost during the process of epithelial-mesenchymal transition (EMT), which occurs with a switch from E-Cadherin expression to a gain of N-Cadherin and other mesenchymal markers. EMT has been shown to play a role in the metastatic process while the reverse process, mesenchymal-epithelial transition (MET), is important for metastatic colonization. Here we report an unexpected role of E-Cadherin in regulating tumorigenicity and hypoxia responses of breast tumors in vivo. Reduced expression of E-Cadherin led to a dramatic reduction of the in vivo growth capability of SUM149, Mary-X and 4T1 tumor cells. Furthermore, over-expression of ZEB1, a known transcriptional repressor of E-Cadherin, led to reduced in vivo growth of SUM149 tumors. Gene set enrichment analysis identified the loss of hypoxia response genes as a major mechanism in mediating the lack of in vivo growth of SUM149 cells that lacked E-Cadherin or over-expressed ZEB1. The in vivo growth defect of SUM149 E-Cadherin knockdown tumors was rescued by the hypoxia-inducible 1α transcription factor (HIF-1α). Given the importance of HIF-1α in cellular metabolism, we observed reduced glycolytic capacity in SUM149 and 4T1 cells that had E-Cadherin knocked down. Our observations shed light on the complex functions of E-Cadherin in retention of an epithelial phenotype and as a mediator of survival of aggressive breast cancer under hypoxic conditions in vivo. Furthermore, we find that patients with basal subtype breast cancer and high E-Cadherin expression in their tumors had a poor clinical outcome. Our data suggests a novel function for E-Cadherin as a bona fide signaling molecule required for the in vivo growth of aggressive breast cancer tumor cells, that retain E-Cadherin expression, in mediating their metabolic function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3717307PMC
http://dx.doi.org/10.18632/oncotarget.872DOI Listing

Publication Analysis

Top Keywords

vivo growth
20
e-cadherin
13
e-cadherin expression
12
breast cancer
12
e-cadherin led
8
tumor cells
8
growth sum149
8
aggressive breast
8
vivo
7
growth
5

Similar Publications

Epiregulin ameliorates ovariectomy-induced bone loss through orchestrating the differentiation of osteoblasts and osteoclasts.

J Bone Miner Res

January 2025

NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.

Epiregulin plays a role in a range of biological activities including malignancies. This study aims to investigate the potential contribution of epiregulin to bone cell differentiation and bone homeostasis. The data showed that epiregulin expression was upregulated during osteogenesis but downregulated during adipogenesis.

View Article and Find Full Text PDF

The p60 subunit of the chromatin assembly factor-1 complex, that is, chromatin assembly factor-1 subunit B (CHAF1B), is a histone H3/H4 chaperone crucial for the transcriptional regulation of cell differentiation and self-renewal. CHAF1B is overexpressed in several cancers and may represent a potential target for cancer therapy. However, its expression and clinical significance in lung squamous-cell carcinoma (LUSC) remain unclear.

View Article and Find Full Text PDF

Alginate-polylysine-alginate (APA) microencapsulated transgenic human amniotic epithelial cells ameliorate fibrosis in hypertrophic scars.

Inflamm Res

January 2025

Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China.

Background: Hypertrophic scar (HS) is a severe skin fibrosis. Transplanting stem cells carrying anti-fibrotic cytokine genes, like interferon-gamma (IFN-γ), is a novel therapeutic strategy. Human amniotic epithelial cells (hAECs) are ideal seed cells and gene vectors.

View Article and Find Full Text PDF

Therapeutic Effects of GDF6-Overexpressing Mesenchymal Stem Cells through Upregulation of the GDF15/SIRT1 Axis in Age-Related Hearing Loss.

Front Biosci (Landmark Ed)

January 2025

Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006 Nanchang, Jiangxi, China.

Background: It has been reported the therapeutic effects of mesenchymal stem cells (MSCs) on hearing loss. This study explored the therapeutic effects of growth differentiation factor 6 (GDF6) overexpression-induced MSCs (MSCs-GDF6) on age-related hearing loss (ARHL) and its underlying mechanisms.

Methods: Reverse transcription-quantitative PCR and western blotting were used to evaluate gene expression.

View Article and Find Full Text PDF

Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.

Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!