Although aging is commonly linked to a reduction in joint range of motion, it is unclear if all body joints behave similarly. To address this issue, the main purpose of this study was to compare age-related loss of mobility of seven body joints. A total of 6,000 participants (3,835 men and 2,165 women) aged 5 to 92 years took part in this study. The maximal passive range of motion of 20 movements was evaluated by Flexitest, and each movement was scored from 0 to 4. Composite scores were obtained for each of seven joints and for overall flexibility (Flexindex (FLX)) by adding individual movement scores. Confirming previous findings, FLX systematically decreased with aging (p < .001), with female participants being more flexible for all ages (p < 0.001) and having a more gradual, 0.6% vs. 0.8%/year, age reduction (p < .001). Starting at 30 and 40 years, respectively, for male and female participants, the relative contribution of each composite joint score to FLX dramatically changed. Shoulder contribution to FLX male's score went from 13.9% at 28 years of age to only 5.2% at 85 years of age. In general, proportionally, shoulder and trunk became less flexible, while elbow and knee mobility was preserved to a greater extent. Our findings indicated that age-related loss of mobility is rather joint-specific, which could be related to distinct routine usage patterns of the major body joints along life.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3824991PMC
http://dx.doi.org/10.1007/s11357-013-9525-zDOI Listing

Publication Analysis

Top Keywords

body joints
12
range motion
8
age-related loss
8
loss mobility
8
female participants
8
years age
8
age-related mobility
4
mobility loss
4
loss joint-specific
4
joint-specific analysis
4

Similar Publications

Background And Objectives: Rheumatoid arthritis (RA) is a well-known systemic autoimmune inflammatory disease. This investigation aimed to assess the effects of Sina-curcumin, a novel nano micelle-based curcumin, on immune system responses of RA patients.

Methods: This pilot study is a randomized double blinded, controlled trial.

View Article and Find Full Text PDF
Article Synopsis
  • The human microbiome consists of microorganisms like bacteria and fungi that impact health, with imbalances (dysbiosis) linked to diseases such as asthma and obesity.
  • Current research is exploring how the gut microbiome specifically affects joint health and diseases like osteoarthritis through inflammatory responses triggered by dysbiosis.
  • The review aims to enhance our understanding of the microbiome's role in disease and emphasizes the need for further studies on the joint microbiome's impact on conditions like periprosthetic joint infection.
View Article and Find Full Text PDF

Impact of backpack load during walking: an EMG and biomechanical analysis.

Med Biol Eng Comput

January 2025

Biomedical Engineering, Bahçeşehir University, Çırağan Caddesi Osmanpaşa Mektebi Sokak No: 4-6 Beşiktaş, İstanbul, 34353, Turkey.

This study aims to understand the impact of backpack carriage, a regular activity for many, on back muscles and joint mobility during walking so that clinicians can develop strategies or products to ensure individuals' safety and well-being. Surface electromyography (EMG) and XSENS Awinda motion capture systems were used to analyze the effects of carrying a backpack (12% of body weight) on erector spinae and multifidus muscles, as well as spinal, hip, knee, and ankle joints. Subjects walked at 4 km/h on flat and inclined surfaces.

View Article and Find Full Text PDF

Background: Midfoot pain is common but poorly understood, with radiographs often indicating no anomalies. This study aimed to describe bone, joint and soft tissue changes and to explore associations between MRI-detected abnormalities and clinical symptoms (pain and disability) in a group of adults with midfoot pain, but who were radiographically negative for osteoarthritis.

Methods: Community-based participants with midfoot pain underwent an MRI scan of one foot and scored semi-quantitatively using the Foot OsteoArthritis MRI Score (FOAMRIS).

View Article and Find Full Text PDF

Taking the titanium alloy wing-body connection joint at the rear beam of a certain type of aircraft as the research object, this study analyzed the failure mechanism and verified the structural safety of the wing-body connection joint under actual flight loads. Firstly, this study verified the validity of the loading system and the measuring system in the test system through the pre-test, and the repeatability of the test was analyzed for error to ensure the accuracy of the experimental data. Then, the test piece was subjected to 400,000 random load tests of flight takeoffs and landings, 100,000 Class A load tests, and ground-air-ground load tests, and the test piece fractured under the ground-air-ground load tests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!