In this work gallium-67 ((67)Ga) gamma camera imaging quality was optimized using the Taguchi's analysis and a planar phantom. The acrylic planar phantom was LASER-cut to form groups of slits 1mm wide and 5mm deep, to determine the spatial resolution and contrast ratio that could be achieved in a (67)Ga citrate nuclear medicine examination. The (67)Ga-citrate solution was injected into the slits to form an active radioactive line source which was placed between regular acrylic plates for optimization. Then, nine combinations of four operating factors: L9 (3((4)), of the gamma camera imaging system were used and followed the Taguchi's analysis. The four operating factors were: a) the type of collimator in front of the NaI(Tl) detector, b) the region of interest of (67)Ga gamma rays spectrum, c) the scanning speed of NaI(Tl) detector head and d) the activity of (67)Ga. The original judged grade of the planar phantom image quality was increased 36% and factors a) and b) were confirmed to dominate. The cross interaction among factors was also discussed. Our results showed that the optimal factor settings of the gamma camera imaging system were verified by performing a routine nuclear medicine examination in ten cases. Nine cases showed the same optimal settings as estimated by three highly trained radio-diagnostic physicians. Additionally, the optimal setting yielded clearer images with greater contrast than did the conventional settings. In conclusion, this work suggests for practical use an optimized process for determining both the spatial resolution and the contrast ratio of a gamma camera imaging system using Taguchi's optimal analysis and a planar phantom. The Taguchi's method is most effective in targeting a single quality characteristic but can also be extended to satisfy multiple requirements under specific conditions by revising the definition of signal to noise ratio.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1967/s002449910068 | DOI Listing |
Phys Med Biol
January 2025
CREATIS, INSA de Lyon, Bâtiment Blaise Pascal, 7 Avenue Jean Capelle, Villeurbanne, 69621 Cedex , FRANCE.
Compton cameras are imaging devices that may improve observation of sources of γ photons. We present CoReSi, a Compton Reconstruction and Simulation software implemented in Python and powered by PyTorch to leverage multi-threading and for easy interfacing with image processing and deep learning algorithms. The code is mainly dedicated to medical imaging and for near-field experiments where the images are reconstructed in 3D.
View Article and Find Full Text PDFEur Heart J Imaging Methods Pract
January 2025
Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
Aims: While most clinical guidelines recommend using a 64-projection view technique, some protocols do not specify a preference between 32-projection and 64-projection methods for conducting myocardial perfusion scintigraphy (MPS), which shows the lack of consensus in this matter. Nevertheless, these guidelines and protocols have not provided us with compelling evidence to support why the 64-projection technique is usually chosen. Thus, we aimed to determine if there is a significant difference between them in the assessment of cardiac perfusion and functional indices.
View Article and Find Full Text PDFAppl Radiat Isot
March 2025
Instituto de Física Corpuscular (CSIC-Universidad de Valencia), Valencia, Spain.
This paper explores the adaptation and application of i-TED Compton imagers for real-time dosimetry in Boron Neutron Capture Therapy (BNCT). The i-TED array, previously utilized in nuclear astrophysics experiments at CERN, is being optimized for detecting and imaging 478 keV gamma-rays, critical for accurate BNCT dosimetry. Detailed Monte Carlo simulations were used to optimize the i-TED detector configuration and enhance its performance in the challenging radiation environment typical of BNCT.
View Article and Find Full Text PDFIndian J Nucl Med
November 2024
Department of Nuclear Medicine and Molecular Imaging, Homi Bhabha Cancer Hospital and Mahamana Pandit Madan Mohan Malaviya Cancer Centre, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Varanasi, India.
Background: With the increasing number of oncology cases and a parallel surge in chemotherapeutic drugs for treatment, the treating physicians conducts nephrotoxicity evaluation to provide a personalized dosing strategy. Of the various tests available, glomerular filtration rate (GFR) under gamma camera with help of Gates method has gained importance, being a good index of overall kidney functions. In addition to this, there has been an alternate and old method for GFR estimation: plasma sampling.
View Article and Find Full Text PDFMed Phys
January 2025
Department of Radiation Oncology, Inha University Hospital, Incheon, Republic of Korea.
Background: High-dose-rate (HDR) brachytherapy using Iridium-192 as a radiation source is widely employed in cancer treatment to deliver concentrated radiation doses while minimizing normal tissue exposure. In this treatment, the precision with which the sealed radioisotope source is delivered significantly impacts clinical outcomes.
Purpose: This study aims to evaluate the feasibility of a new four-dimensional (4D) in vivo source tracking and treatment verification system for HDR brachytherapy using a patient-specific approach.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!