Purpose: Somatostatin receptors (SSTR) have been reported as promising targets for imaging agents for cancer. Recently, (68)Ga-DOTATOC-based PET imaging has been used successfully for diagnosis and management of SSTR-expressing tumors. The purpose of this study was to evaluate the influence of chelator modifications and charge on (68)Ga-labeled peptide conjugates.
Procedures: We have synthesized a series of [Tyr(3)]octreotide conjugates that consisted of different NOTA-based chelators with two to five carboxylate moieties, and compared our results with (68)Ga-DOTATOC in both in vitro and in vivo studies.
Results: With the exception of (68)Ga-1 (three carboxylates), the increased number of carboxylates on the NOTA-based chelators resulted in a reduced binding affinity and internalization. Additionally, the tumor uptake for (68)Ga-2 (four carboxylates) and (68)Ga-3 (five carboxylates) was reduced compared to that of (68)Ga-DOTATOC (three carboxylates) and (68)Ga-NO2ATOC (two carboxylates) and (68)Ga-1 (three carboxylates) at 2 h p.i. suggesting the presence of an optimal charge for this compound.
Conclusions: Chelator modifications can lead to the altered pharmacokinetics. These results may impact further design considerations for peptide-based imaging agents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4329983 | PMC |
http://dx.doi.org/10.1007/s11307-013-0627-x | DOI Listing |
Biochim Biophys Acta Rev Cancer
January 2025
Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau, China; Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, China. Electronic address:
Chemoresistance is a multifactorial phenomenon and the primary cause to the ineffectiveness of oncotherapy and cancer recurrence. Membrane drug transporters are crucial for drug delivery and disposition in cancer cells. Changes in the expression and functionality of these transporters lead to decreased intracellular accumulation and reduced toxicity of antineoplastic drugs.
View Article and Find Full Text PDFMolecules
January 2025
Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.
The scientific interest in the chemical modification of chitosan to increase its solubility and application has led to its conjugation with Schiff bases, which are interesting scaffolds endowed with diverse biological properties. The resultant chitosan-based Schiff bases (CSBs) are widely studied in scientific literature due to the myriad of activities exerted, both catalytic and biological, including anticancer, anti-inflammatory, antioxidant, and especially antimicrobial ones. Antimicrobial resistance (AMR) is one of the major public health challenges of the twenty-first century because it represents a threat to the prevention and treatment of a growing number of bacterial, parasitic, viral, and fungal infections that are no longer treatable with the available drugs.
View Article and Find Full Text PDFMetabolites
December 2024
Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK.
Since the biological activities and toxicities of 'foreign' and/or excess levels of metal ions are predominantly determined by their precise molecular nature, here we have employed high-resolution H NMR analysis to explore the 'speciation' of paramagnetic Ni(II) ions in human saliva, a potentially rich source of biomolecular Ni(II)-complexants/chelators. These studies are of relevance to the corrosion of nickel-containing metal alloy dental prostheses (NiC-MADPs) in addition to the dietary or adverse toxicological intake of Ni(II) ions by humans. Unstimulated whole-mouth human saliva samples were obtained from n = 12 pre-fasted (≥8 h) healthy participants, and clear whole-mouth salivary supernatants (WMSSs) were obtained from these via centrifugation.
View Article and Find Full Text PDFFood Res Int
February 2025
College of Food Science, Southwest University, Chongqing 400715, PR China. Electronic address:
This study applied high hydrostatic pressure (HHP) treatment to buffalo milk casein to assess the influence of different pressure levels on its structural characteristics, physicochemical properties, and functional properties. The results showed that although HHP had no marked impact on the zeta potential and secondary structure, it altered the protein's spatial structure (primarily its tertiary structure), and improved dispersion properties (such as particle size, solubility, and turbidity), as well as foaming properties. Additionally, HHP improved the antioxidant activity and antibacterial activity against Escherichia coli.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, China.
Plants commonly undergo leaf morphoanatomy and composition modifications to cope with drought stress, and these tend to reduce mesophyll conductance to CO2 diffusion (gm), a key limitation to photosynthesis. The cell wall appears to play a crucial role in this reduction, yet the specific effect of cell wall compositions on gm and the underlying regulatory mechanisms of cell wall thickness (Tcw) variation are not well understood. In this study, we subjected cotton plants to varying levels of water deficit to investigate the impact of leaf cell wall composition and the arrangement patterns of microfibrils within cell walls on Tcw and leaf gas exchange.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!