We study spin-resolved noise in Coulomb blockaded double quantum dots coupled to ferromagnetic electrodes. The modulation of the interdot coupling and spin polarization in the electrodes gives rise to an intriguing dynamical spin ↑-↑ (↓-↓) blockade mechanism: bunching of up (down) spins due to dynamical blockade of an up (down) spin. In contrast to the conventional dynamical spin ↑-↓ bunching (bunching of up spins associated with a dynamical blockade of a down spin), this new bunching behavior is found to be intimately associated with the spin mutual-correlation, i.e. the noise fluctuation between opposite spin currents. We further demonstrate that the dynamical spin ↑-↑ and ↑-↓ bunching of tunneling events may be coexistent in the regime of weak interdot coupling and low spin polarization.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/25/15/155304DOI Listing

Publication Analysis

Top Keywords

dynamical spin
12
spin
9
double quantum
8
quantum dots
8
dots coupled
8
coupled ferromagnetic
8
ferromagnetic electrodes
8
interdot coupling
8
spin polarization
8
spin ↑-↑
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!