IFNγ in combination with IL-7 enhances immunotherapy in two rat glioma models.

J Neuroimmunol

Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden.

Published: May 2013

Peripheral immunization, using a combination of interferon-gamma (IFNγ)- and interleukin-7 (IL-7)-producing tumor cells, eradicated 75% of pre-established intracerebral N32 rat glioma tumors, and prolonged survival in the more aggressive RG2 model. Rats immunized with IFNγ- and IL7-transduced N32 cells displayed increases in IFNγ plasma levels and proliferating circulating T cells when compared with rats immunized with N32-wild type cells. Following irradiation, the expression of MHC I and II was high on N32-IFNγ cells, but low on RG2-IFNγ cells. In conclusion, IFNγ and IL-7 immunizations prolong survival in two rat glioma models.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneuroim.2013.02.017DOI Listing

Publication Analysis

Top Keywords

rat glioma
12
glioma models
8
rats immunized
8
cells
6
ifnγ combination
4
combination il-7
4
il-7 enhances
4
enhances immunotherapy
4
immunotherapy rat
4
models peripheral
4

Similar Publications

This study aimed to investigate β-Caryophyllene (BCA) pharmacokinetics as well as the potential antitumor activity and mechanism of action of BCA and eugenol (EU), alone or in combination, in U87 glioblastoma (GB) cells. The BCA pharmacokinetic was studied by evaluating its concentration profiles in rat blood and cerebrospinal fluid after oral and intravenous administration. EU and BCA antitumor mechanisms were assessed by comparing their effects in U87 GB cells and non-tumoral HMC3 cells.

View Article and Find Full Text PDF

Glioblastomas (GBM) are malignant tumours with poor prognosis. Treatment involves chemotherapy and/or radiotherapy; however, there is currently no standard treatment for recurrence, and prognosis remains unfavourable. Inflammatory mediators and microRNAs (miRNAs) influence the aggressiveness of GBM, being involved in the communication with the cells of the tumour parenchyma, including microglia/macrophages, and maintaining an immunosuppressive microenvironment.

View Article and Find Full Text PDF

Monitoring of cancer ferroptosis with [F]hGTS13, a system xc- specific radiotracer.

Theranostics

January 2025

Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, 94305, USA.

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults, characterized by resistance to conventional therapies and poor survival. Ferroptosis, a form of regulated cell death driven by lipid peroxidation, has recently emerged as a promising therapeutic target for GBM treatment. However, there are currently no non-invasive imaging techniques to monitor the engagement of pro-ferroptotic compounds with their respective targets, or to monitor the efficacy of ferroptosis-based therapies.

View Article and Find Full Text PDF

Sonodynamic therapy is an emerging therapeutic approach against brain tumours. However, the treatment scheme and ultrasound parameters have yet to be explored for clinical translation. Our study aimed to optimize ultrasound parameters for sonodynamic therapy (SDT) with 5-ALA as a sonosensitizing agent and to evaluate its therapeutic outcome on the rodent 9L gliosarcoma and the human U87 glioblastoma models.

View Article and Find Full Text PDF

This study investigated whether intravenous administration of tumor cells killed by photodynamic therapy (PDT) with 5-aminolevulinic acid (5-ALA) had antitumor effects on distal tumors. Furthermore, a novel extracorporeal blood circulating 5-ALA/PDT system was developed. 5-ALA/PDT- (low or high irradiation) or anticancer drug-treated cells were intravenously administered to rats in a glioma cancer model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!