Context: The particularity of the Nano Spray Dryer B-90 is the nozzle containing a mesh vibrating at ultrasonic frequency.
Objective: To study process parameters and processability of crude phospholipid dispersions, in particular the effect of concentration and mesh aperture on both particle size of the dry solid phospholipid nano-particles and on the re-dispersed powder.
Materials And Methods: Phospholipid dispersions containing trehalose as a stabilizer were spray dried. Particle size distributions of dry powders were evaluated by SEM micrographs and by PCS and cryo-TEM for the re-dispersed particles.
Results: Spray drying of crude liposome dispersions revealed solid phospholipid nano-particles. Aperture of nozzle mesh and concentration of the dispersions, respectively, both increased the size of solid phospholipid nano-particles. For crude dispersions, an upper limit with respect to processability was found close to below 10% (m/m) even if the crude dispersion was passed along the mesh several times; however, more effective dispersing methods such as pre-sonication can push the limit of processability to higher values.
Discussion And Conclusion: The nano spray dryer is capable of spray drying crude dispersions of phospholipids in concentrations below 10% (m/m) generating solid phospholipid nano-particles relevant for pulmonary delivery. Re-dispersion of spray dried powder reveals liposomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/10837450.2013.778875 | DOI Listing |
Nutrients
December 2024
Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA.
Pancreatic ductal adenocarcinoma (PDAC) is one of the worst solid malignancies in regard to outcomes and metabolic dysfunction leading to cachexia. It is alarming that PDAC incidence rates continue to increase and warrant the need for innovative approaches to combat this disease. Due to its relatively slow progression (10-20 years), prevention strategies represent an effective means to improve outcomes.
View Article and Find Full Text PDFClin Chem Lab Med
January 2025
Laboratory of Clinical Pathology, Azienda Sanitaria Universitaria Integrata, Udine, Italy.
Objectives: External quality assessment (EQA) programs play a pivotal role in harmonizing laboratory practices, offering users a benchmark system to evaluate their own performance and identify areas requiring improvement. The objective of this study was to go through and analyze the UK NEQAS "Immunology, Immunochemistry and Allergy" EQA reports between 2012 and 2021 to assess the overall level of harmonization in autoimmune diagnostics and identify areas requiring improvement for future actions.
Methods: The EQA programs reviewed included anti-nuclear (ANA), anti-dsDNA, anti-centromere, anti-extractable nuclear antigen (ENA), anti-phospholipids, anti-neutrophil cytoplasm (ANCA), anti-proteinase 3 (PR3), anti-myeloperoxidase (MPO), anti-glomerular basement membrane (GBM), rheumatoid factor (RF), anti-citrullinated protein antibodies (ACPA), mitochondrial (AMA), liver-kidney-microsomal (LKM), smooth muscle (ASMA), APCA, and celiac disease antibodies.
Pharmaceutics
December 2024
Department of Pharmacy, Faculty of Health and Medical Science, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
: This study aims to broaden the knowledge on co-amorphous phospholipid systems (CAPSs) by exploring the formation of CAPSs with a broader range of poorly water-soluble drugs, celecoxib (CCX), furosemide (FUR), nilotinib (NIL), and ritonavir (RIT), combined with amphiphilic phospholipids (PLs), including soybean phosphatidylcholine (SPC), hydrogenated phosphatidylcholine (HPC), and mono-acyl phosphatidylcholine (MAPC). : The CAPSs were initially prepared at equimolar drug-to-phospholipid (PL) ratios by mechano-chemical activation-based, melt-based, and solvent-based preparation methods, i.e.
View Article and Find Full Text PDFMolecules
December 2024
Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, ul. Zwirki i Wigury 101, 02-089 Warsaw, Poland.
In this study, we explore the interactions between melittin, a cationic antimicrobial peptide, and model lipid membranes composed of the negatively charged phospholipids 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) and 1,2-dimyristoyl-sn-glycero-3-phosphoserine (DMPS). Using the Langmuir monolayer technique and atomic force microscopy (AFM), we reveal novel insights into these interactions. Our key finding is the observation of the ripple phase in the DMPS bilayer on mica, a phenomenon not previously reported for negatively charged single bilayers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!