Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
CK1δ (Casein kinase I isoform delta) is a member of CK1 kinase family protein that mediates neurite outgrowth and the function as brain-specific microtubule-associated protein. ATP binding kinase domain of CK1δ is essential for regulating several key cell cycle signal transduction pathways. Mutation in CK1δ protein is reported to cause cancers and affects normal brain development. S97C mutation in kinase domain of CK1δ protein has been involved to induce breast cancer and ductal carcinoma. We performed molecular docking studies to examine the effect of this mutation on its ATP-binding affinity. Further, we conducted molecular dynamics simulations to understand the structural consequences of S97C mutation over the kinase domain of CK1δ protein. Docking results indicated the loss of ATP-binding affinity of mutant structure, which were further rationalized by molecular dynamics simulations, where a notable loss in 3-D conformation of CK1δ kinase domain was observed in mutant as compared to native. Our results explained the underlying molecular mechanism behind the observed cancer associated phenotype caused by S97C mutation in CK1δ protein.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2013.770373 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!