High-temperature superconductivity has a range of applications from sensors to energy distribution. Recent reports of this phenomenon in compounds containing electronically active BiS2 layers have the potential to open a new chapter in the field of superconductivity. Here we report the identification and basic properties of two new ternary Bi-O-S compounds, Bi2OS2 and Bi3O2S3. The former is non-superconducting; the latter likely explains the superconductivity at T(c) = 4.5 K previously reported in "Bi4O4S3". The superconductivity of Bi3O2S3 is found to be sensitive to the number of Bi2OS2-like stacking faults; fewer faults correlate with increases in the Meissner shielding fractions and T(c). Elucidation of the electronic consequences of these stacking faults may be key to the understanding of electronic conductivity and superconductivity which occurs in a nominally valence-precise compound.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja4011767DOI Listing

Publication Analysis

Top Keywords

stacking faults
8
superconductivity
6
stacking variants
4
variants superconductivity
4
superconductivity bi-o-s
4
bi-o-s system
4
system high-temperature
4
high-temperature superconductivity
4
superconductivity range
4
range applications
4

Similar Publications

This study presents a comprehensive workflow to detect low seismic amplitude gas fields in hydrocarbon exploration projects, focusing on the West Delta Deep Marine (WDDM) concession, offshore Egypt. The workflow integrates seismic spectral decomposition and machine learning algorithms to identify subtle anomalies, including low seismic amplitude gas sand and background amplitude water sand. Spectral decomposition helps delineate the fairway boundaries and structural features, while Amplitude Versus Offset (AVO) analysis is used to validate gas sand anomalies.

View Article and Find Full Text PDF

The main obstacle to large scale quantum computing are the errors present in every physical qubit realization. Correcting these errors requires a large number of additional qubits. Two main avenues to reduce this overhead are (i) low-density parity check (LDPC) codes requiring very few additional qubits to correct errors (ii) cat qubits where bit-flip errors are exponentially suppressed by design.

View Article and Find Full Text PDF

Adsorption behaviors are typically examined through adsorption isotherms, which measure the average adsorption amount as a function of partial pressure or time. However, this method is incapable of identifying inhomogeneities across the adsorbent, which may occur in the presence of strong intermolecular interactions of the adsorbate. In this study, we visualize the adsorption of molecular iodine (I) in the metal-organic framework material MFM-300(Sc) using high-resolution scanning transmission electron microscopy (STEM).

View Article and Find Full Text PDF

Ductilization of 2.6-GPa alloys via short-range ordered interfaces and supranano precipitates.

Science

January 2025

Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), Hysitron Applied Research Center in China (HARCC) and Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China.

Higher strength and higher ductility are desirable for structural materials. However, ultrastrong alloys inevitably show decreased strain-hardening capacity, limiting their uniform elongation. We present a supranano (<10 nanometers) and short-range ordering design for grain interiors and grain boundary regions, respectively, in fine-grained alloys based on vanadium, cobalt, and nickel, with additions of tungsten, copper, aluminum, and boron.

View Article and Find Full Text PDF

Unconventional twinning assisted by pyramidal II stacking faults.

Mater Res Lett

October 2024

Mechanics & Materials Lab, Department of Mechanical and Process Engineering, ETH Zürich, Zürich, Switzerland.

Twinning significantly affects the deformation behavior of hexagonal close-packed Mg, so a thorough understanding of twin nucleation and growth mechanisms is required for enhancing the properties of Mg-based materials. The commonly observed tension twins have been traditionally linked to 〈c + a〉 dislocation dissociation, which results in zonal dislocations with large Burgers vectors several times that of a single twinning dislocation and some residual dislocations. Contrarily, our molecular dynamics simulations reveal twin nucleation from pyramidal II stacking faults through atomic shuffling without shear displacements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!