Understanding among and within population genetic variation of ecologically important plant traits provides insight into the potential evolutionary processes affecting those traits. The strength and consistency of selection driving variability in traits would be affected by plasticity in differences among genotypes across environments (G×E). We investigated population divergence, selection and environmental plasticity of foliar plant secondary metabolites (PSMs) in a dominant tree species, Eucalyptus globulus. Using two common garden trials we examined variation in PSMs at multiple genetic scales; among 12 populations covering the full geographic range of the species and among up to 60 families within populations. Significant genetic variation in the expression of many PSMs resides both among and within populations of E. globulus with moderate (e.g., sideroxylonal A h(2)op = 0.24) to high (e.g., macrocarpal G h(2)op = 0.48) narrow sense heritabilities and high coefficients of additive genetic variation estimated for some compounds. A comparison of Qst and Fst estimates suggest that variability in some of these traits may be due to selection. Importantly, there was no genetic by environment interaction in the expression of any of the quantitative chemical traits despite often significant site effects. These results provide evidence that natural selection has contributed to population divergence in PSMs in E. globulus, and identifies the formylated phloroglucinol compounds (particularly sideroxylonal) and a dominant oil, 1,8-cineole, as candidates for traits whose genetic architecture has been shaped by divergent selection. Additionally, as the genetic differences in these PSMs that influence community phenotypes is stable across environments, the role of plant genotype in structuring communities is strengthened and these genotypic differences may be relatively stable under global environmental changes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3603948 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0058416 | PLOS |
Sci Rep
January 2025
Emergency Department, The State Key Laboratory for Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
Variation in the incidence, survival rate and factors associated with survival after cardiac arrest in China is reported. Some studies have tried to fill the knowledge gap regarding the epidemiology of cardiac arrest in China but were unable to identify reasons for the reported differences. Therefore, the purpose of this study was to describe Chinese management of cardiac arrest, particularly from the perspective of compression, ventilation, monitoring, treatment, and extracorporeal cardiopulmonary resuscitation.
View Article and Find Full Text PDFNat Commun
January 2025
Unit on the Development of Neurodegeneration, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
Traumatic brain injury (TBI) is a risk factor for neurodegeneration, however little is known about how this kind of injury alters neuron subtypes. In this study, we follow neuronal populations over time after a single mild TBI (mTBI) to assess long ranging consequences of injury at the level of single, transcriptionally defined neuronal classes. We find that the stress-responsive Activating Transcription Factor 3 (ATF3) defines a population of cortical neurons after mTBI.
View Article and Find Full Text PDFSingle-cell RNA-seq analysis characterizes developmental mechanisms of cellular differentiation, lineage determination, and reprogramming with differential conditioning of the microenvironment. In this article, the underlying dynamics are formulated via optimal transport with algorithms that calculate the transition probability of the state of cell dynamics over time. The algorithmic biases of optimal transport (OT) due to entropic regularization are balanced by Sinkhorn divergence, which normally de-biases the regularized transport by centering them.
View Article and Find Full Text PDFThe expression of genomically-encoded information is not error-free. Transcript-error rates are dramatically higher than DNA-level mutation rates, and despite their transient nature, the steady-state load of such errors must impose some burden on cellular performance. However, a broad perspective on the degree to which transcript-error rates are constrained by natural selection and diverge among lineages remains to be developed.
View Article and Find Full Text PDFEvolution
January 2025
Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America.
Changes in gene expression underlie much of evolution and occur via either cis-acting mutations, which lie near the affected gene and act in a context specific manner, or trans-acting mutations, which may be far from the affected gene and act through diffusible molecules such as transcription factors. A commonly held view is that most expression variation within species is controlled in trans- while expression differences between species are largely controlled in cis-. Here, we summarize recent intraspecific gene regulation studies and find, contrary to this widely held view, that many studies in diverse taxa have revealed a large role for cis-acting mutations underlying expression variation within species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!