Collective rhythmic dynamics from neurons is vital for cognitive functions such as memory formation but how neurons self-organize to produce such activity is not well understood. Attractor-based computational models have been successfully implemented as a theoretical framework for memory storage in networks of neurons. Additionally, activity-dependent modification of synaptic transmission is thought to be the physiological basis of learning and memory. The goal of this study is to demonstrate that using a pharmacological treatment that has been shown to increase synaptic strength within in vitro networks of hippocampal neurons follows the dynamical postulates theorized by attractor models. We use a grid of extracellular electrodes to study changes in network activity after this perturbation and show that there is a persistent increase in overall spiking and bursting activity after treatment. This increase in activity appears to recruit more "errant" spikes into bursts. Phase plots indicate a conserved activity pattern suggesting that a synaptic potentiation perturbation to the attractor leaves it unchanged. Lastly, we construct a computational model to demonstrate that these synaptic perturbations can account for the dynamical changes seen within the network.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3603961 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0057144 | PLOS |
Epilepsy Curr
January 2025
Mathematics Department Institute for Artificial Intelligence and Data Science, and Neuroscience ProgramUniversity at Buffalo SUNY.
Cureus
December 2024
School of Allied Health Sciences, Manav Rachna International Institute of Research and Studies, Faridabad, IND.
Introduction: Sleep deprivation (SD), stemming from a myriad of aetiologies, is a prevalent health condition frequently overlooked. It typically impairs memory consolidation and synaptic plasticity, potentially through neuroinflammatory mechanisms and adenosinergic signalling. It is still unclear whether the adenosine A1 receptor (A1R) modulates SD-induced neurological deficits in the hippocampus.
View Article and Find Full Text PDFBackground: Hirschsprung disease (HSCR) is a rare neurodevelopmental disorder caused by disrupted migration and proliferation of enteric neural crest cells during enteric nervous system development. Genetic studies suggest a complex etiology involving both rare and common variants, but the contribution of ultra-rare pathogenic variants (PAs) remains poorly understood.
Methods: We perform whole-exome sequencing (WES) on 301 HSCR probands and 109 family trios, employing advanced statistical methods and gene prioritization strategies to identify genes carrying and ultra-rare coding pathogenic variants.
Front Neurol
January 2025
Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States.
Introduction: The brainstem vestibular nuclei neurons receive synaptic inputs from inner ear acceleration-sensing hair cells, cerebellar output neurons, and ascending signals from spinal proprioceptive-related neurons. The lateral (LVST) and medial (MVST) vestibulospinal (VS) tracts convey their coded signals to the spinal circuits to rapidly counter externally imposed perturbations to facilitate stability and provide a framework for self-generated head movements.
Methods: The present study describes the morphological characteristics of intraaxonally recorded and labeled VS neurons monosynaptically connected to the 8th nerve.
Front Cell Neurosci
January 2025
Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China.
Alzheimer's disease (AD) is the most prevalent type of dementia. Treatments for AD do not reverse the loss of brain function; rather, they decrease the rate of cognitive deterioration. Current treatments are ineffective in part because they do not address neurotrophic mechanisms, which are believed to be critical for functional recovery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!