Climate change impacts tree species differentially by exerting unique pressures and altering their suitable habitats. We previously predicted these changes in suitable habitat for current and future climates using a species habitat model (DISTRIB) in the eastern United States. Based on the accuracy of the model, the species assemblages should eventually reflect the new quasi-equilibrium suitable habitats (~2100) after accounting for the lag in colonization. However, it is an open question if and when these newly suitable habitats will be colonized under current fragmented landscapes and realistic migration rates. To evaluate this, we used a spatially explicit cell-based model (SHIFT) that estimates colonization potentials under current fragmented habitats and several estimates of historical migration rates at a 1 km resolution. Computation time, which was previously the biggest constraint, was overcome by a novel application of convolution and Fast Fourier Transforms. SHIFT outputs, when intersected with future suitable habitats predicted by DISTRIB, allow assessment of colonization potential under future climates. In this article, we show how our approach can be used to screen multiple tree species for their colonization potentials under climate change. In particular, we use the DISTRIB and SHIFT models in combination to assess if the future dominant forest types in the north will really be dominated by oaks, as modelled via DISTRIB. Even under optimistic scenarios, we conclude that only a small fraction of the suitable habitats of oaks predicted by DISTRIB is likely to be occupied within 100 years, and this will be concentrated in the first 10-20 km from the current boundary. We also show how DISTRIB and SHIFT can be used to evaluate the potential for assisted migration of vulnerable tree species, and discuss the dynamics of colonization at range limits.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.12204DOI Listing

Publication Analysis

Top Keywords

suitable habitats
20
tree species
16
colonization potentials
12
climate change
12
species colonization
8
spatially explicit
8
habitats predicted
8
future climates
8
current fragmented
8
migration rates
8

Similar Publications

Aromia bungii is an invasive Cerambycidae of major concern at the global scale because of the damage caused to Rosaceae. Given the major phytosanitary relevance of A. bungii, predicting its spread in invaded areas and identifying possible new suitable regions worldwide remains a key action to develop appropriate management practices and optimise monitoring and early detection campaigns.

View Article and Find Full Text PDF

The Asian long-horned tick, Haemaphysalis longicornis Neumann, 1901, is the competent vector for severe fever with thrombocytopenia syndrome virus (SFTSV). Haemaphysalis longicornis originated mainly in eastern Asia and invaded many areas like Australia, New Zealand, and the Pacific islands, and was recently introduced to eastern parts of the USA. This species is characterized by high adaptability to a wide range of temperatures and can reproduce parthenogenically under stressful conditions.

View Article and Find Full Text PDF

In recent decades, the threats of ticks and tick-borne diseases (TBDs) increased extensively with environmental change, urbanization, and rapidly changing interactions between human and animals. However, large-scale distribution of tick and TBD risks as well as their relationship with environmental change remain inadequately unclear. Here, we first proposed a "tick-pathogen-habitat-human" model to project the global potential distribution of main pathogenic ticks using a total of 70,714 occurrence records.

View Article and Find Full Text PDF

Large-scale and long-term wildlife research and monitoring using camera traps: a continental synthesis.

Biol Rev Camb Philos Soc

January 2025

Wildlife Observatory of Australia (WildObs), Queensland Cyber Infrastructure Foundation (QCIF), Brisbane, Queensland, 4072, Australia.

Camera traps are widely used in wildlife research and monitoring, so it is imperative to understand their strengths, limitations, and potential for increasing impact. We investigated a decade of use of wildlife cameras (2012-2022) with a case study on Australian terrestrial vertebrates using a multifaceted approach. We (i) synthesised information from a literature review; (ii) conducted an online questionnaire of 132 professionals; (iii) hosted an in-person workshop of 28 leading experts representing academia, non-governmental organisations (NGOs), and government; and (iv) mapped camera trap usage based on all sources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!