The prognostic and predictive value of KRAS oncogene substitutions in lung adenocarcinoma.

Cancer

University of Pittsburgh Cancer Institute, School of Medicine/Hematology-Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

Published: June 2013

Background: The prognostic and therapeutic implications of the spectrum of v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) oncogene substitutions in lung cancer remain poorly understood. The objective of this study was to determine whether KRAS oncogene substitutions differed with regard to prognosis or predictive value in lung adenocarcinoma.

Methods: KRAS oncogene substitutions and mutant allele-specific imbalance (MASI) were determined in patients with lung adenocarcinoma, and the associations with overall survival (OS), recurrence-free survival (RFS), and chemotherapy interactions were assessed.

Results: KRAS mutational analysis was performed on 988 lung adenocarcinomas, and 318 KRAS mutations were identified. In this predominantly early stage cohort (78.6% of patients had stage I-III disease), OS and RFS did not differ according to the type of KRAS substitution (OS, P = .612; RFS, P = .089). There was a trend toward better OS in the subset of patients with KRAS codon 13 mutations (P = .052), but that trend was not significant in multivariate analysis (P = .076). RFS did not differ according to codon type in univariate analysis (P = .322). There was a marked difference in RFS based on the presence of MASI in univariate analysis (P = .004) and multivariate analysis (P = .009). A test for interaction was performed to determine whether the effect of chemotherapy on OS and RFS differed based on KRAS substitution type, codon type, or the presence of MASI. That test indicated that there were no differences in the effects of chemotherapy for any of variables examined.

Conclusions: KRAS codon 13 mutations and MASI were identified as candidate biomarkers for prognosis, and it may be useful to incorporate them into prospective studies evaluating novel therapies in KRAS-mutant lung adenocarcinoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3674175PMC
http://dx.doi.org/10.1002/cncr.28039DOI Listing

Publication Analysis

Top Keywords

kras oncogene
16
oncogene substitutions
16
lung adenocarcinoma
12
kras
10
substitutions lung
8
rfs differ
8
kras substitution
8
kras codon
8
codon mutations
8
multivariate analysis
8

Similar Publications

Kirsten Rat Sarcoma viral oncogene homolog (KRAS) is a frequently occurring mutation in non-small-cell lung cancer (NSCLC) and influences cancer treatment and disease progression. In this study, a machine learning (ML) pipeline was applied to radiomic features extracted from public and internal CT images to identify KRAS mutations in NSCLC patients. Both datasets were analyzed using parametric ( test) and non-parametric statistical tests (Mann-Whitney U test) and dimensionality reduction techniques.

View Article and Find Full Text PDF

The epidermal growth factor receptor (EGFR) regulates gene expression through two primary mechanisms: as a growth factor in the nucleus, where it translocates upon binding its ligand, or via its intrinsic tyrosine kinase activity in the cytosol, where it modulates key signaling pathways such as RAS/MYC, PI3K, PLCγ, and STAT3. During tumorigenesis, these pathways become deregulated, leading to uncontrolled proliferation, enhanced migratory and metastatic capabilities, evasion of programmed cell death, and resistance to chemotherapy or radiotherapy. The and oncogenes are pivotal in tumorigenesis, driving processes such as resistance to apoptosis, replicative immortality, cellular invasion and metastasis, and metabolic reprogramming.

View Article and Find Full Text PDF

Intrahepatic cholangiocarcinoma (iCCA) is a lethal malignancy affecting the liver and biliary system. Enhanced understanding of the pathogenic mechanisms underlying iCCA tumorigenesis and the discovery of appropriate therapeutic targets are imperative to improve patient outcomes. Here, we investigated the functions and regulations of solute carrier family 16 member 3 (SLC16A3), which has been reported to be a biomarker of poor prognosis in iCCA.

View Article and Find Full Text PDF

Mutations in the KRAS gene in non-small cell lung cancer (NSCLC) are common drivers. Gene expression and mutation data of NSCLC were collected from the TCGA dataset. DEGs between KRAS mutations and wild type were identified, and enrichment analysis was performed.

View Article and Find Full Text PDF

Introduction: We describe the safety of sotorasib monotherapy in patients with KRAS G12C-mutated advanced non-small cell lung cancer (NSCLC) and discuss practical recommendations for managing key risks.

Methods: Incidence rates of treatment-related adverse events (TRAEs) were pooled from 4 clinical trials: CodeBreaK 100 (NCT03600883), CodeBreaK 101 (NCT04185883), CodeBreaK 105 (NCT04380753), and CodeBreaK 200 (NCT04303780) and graded according to CTCAE v5.0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!