Previous studies have shown an inverse association between allergies and glioma risk; however, results for associations between single nucleotide polymorphisms (SNPs) of allergy-related genes and glioma risk have been inconsistent and restricted to a small number of SNPs. The objective of this study was to examine the association between 166 SNPs of 21 allergy-related genes and glioma risk in a nested case-control study of participants from three large US prospective cohort studies. Blood collection took place between 1982 and 1994 among the 562 included Caucasian participants (143 cases and 419 matched controls) prior to case diagnosis. Custom Illumina assay chips were used for genotyping. Logistic regression analyses, controlling for age and study cohort, were used to determine associations between each SNP and glioma risk. Statistically significant associations were found between rs2494262 and rs2427824 of the FCER1A gene, which encodes the alpha chain of the high affinity immunoglobulin E receptor, and glioma risk (nominal trend p values 0.01 and 0.03, respectively). Significant associations were also found between SNPs in IL10, ADAM33, NOS1 and IL4R and glioma risk. However, our analyses were not corrected for multiple comparisons and need to be interpreted with caution. Our findings with FCER1A SNPs provide further support for the link between allergies and risk of glioma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3679351 | PMC |
http://dx.doi.org/10.1007/s11060-013-1122-6 | DOI Listing |
Front Immunol
January 2025
Department of Neurological Care Unit, The First Affiliated Hospital of YangTze University, Jingzhou, Hubei, China.
Background: Recent years have seen persistently poor prognoses for glioma patients. Therefore, exploring the molecular subtyping of gliomas, identifying novel prognostic biomarkers, and understanding the characteristics of their immune microenvironments are crucial for improving treatment strategies and patient outcomes.
Methods: We integrated glioma datasets from multiple sources, employing Non-negative Matrix Factorization (NMF) to cluster samples and filter for differentially expressed metabolic genes.
iScience
January 2025
Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
This article aims to develop and validate a pathological prognostic model for predicting prognosis in patients with isocitrate dehydrogenase (IDH)-mutant gliomas and reveal the biological underpinning of the prognostic pathological features. The pathomic model was constructed based on whole slide images (WSIs) from a training set ( = 486) and evaluated on internal validation set ( = 209), HPPH validation set ( = 54), and TCGA validation set ( = 352). Biological implications of PathScore and individual pathomic features were identified by pathogenomics set ( = 100).
View Article and Find Full Text PDFNeurosurg Focus Video
January 2025
Department of Neurosurgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan; and.
Surgery of lesions around Wernicke's area is challenging for several reasons. The anatomical boundaries are not clearly defined, necessitating functional identification in addition to anatomical landmarks. There are potential complications secondary to injury of the surrounding structures.
View Article and Find Full Text PDFNeurooncol Adv
December 2024
Shanghai Medical College, Fudan University, Shanghai, China.
Background: Isocitrate dehydrogenase (IDH)-mutant gliomas generally have a better prognosis than IDH-wild-type glioblastomas, and the extent of resection significantly impacts prognosis. However, there is a lack of integrated tools for predicting outcomes based on molecular subtypes and treatment modalities. This study aimed to identify factors influencing gross total resection (GTR) rates and to develop a clinical prognostic tool for IDH-mutant gliomas.
View Article and Find Full Text PDFCancer Lett
January 2025
Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China. Electronic address:
Supramaximal resection in glioblastoma, concerning non-contrast-enhancing (nCE) tumors, exhibited additional survival benefits. However, whether all patients can benefit from supramaximal resection of nCE tumors and the optimal resection target remains unclear, especially for the glioblastoma, IDH-wildtype under the new WHO CNS tumor classification. Clinical and surgical characteristics were collected from 155 patients with newly diagnosed glioblastoma, IDH-wildtype from the Chinese Glioma Genome Atlas, and a prospective cohort of 128 patients was enrolled for external validation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!