A novel method was developed for extraction of short-chain-length poly(hydroxyalkanoates) (scl-PHA) from microbial biomass by the well-known "scl-PHA anti-solvent" acetone at elevated temperature and pressure in a closed system combining components for extraction, filtration, and product work-up. Recovery of scl-PHA using this new approach was compared with established methods using chloroform at ambient pressure. The new method performs similar regarding product purity (98.4 vs. 97.7%) and extraction yield (96.8% by both methods), and is by far faster than established chloroform extraction (20 min vs. 12 h). Separation of the polymer from acetone is simply achieved by cooling down the acetone solution of scl-PHA, thus allows for a nearly quantitative recovery of the solvent that conveniently can be reused. Characterization of scl-PHA extracted by both methods does not reveal any significant difference in terms of molar mass and thermo analytical parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10529-013-1185-7DOI Listing

Publication Analysis

Top Keywords

extraction short-chain-length
8
acetone elevated
8
elevated temperature
8
temperature pressure
8
extraction
5
scl-pha
5
short-chain-length poly-[r-hydroxyalkanoates]
4
poly-[r-hydroxyalkanoates] scl-pha
4
scl-pha "anti-solvent"
4
acetone
4

Similar Publications

Indonesia is arguably a major player in worldwide rice production. Though white rice is the most predominantly cultivated, red, brown, and red rice are also very common. These types of rice are known to have different cooking properties that may be related to differences in their starch properties.

View Article and Find Full Text PDF

Bio-upcycling of plastics is an emerging alternative process that focuses on extracting value from a wide range of plastic waste streams. Such streams are typically too contaminated to be effectively processed using traditional recycling technologies. Medium-chain-length (mcl) diols and dicarboxylates (DCA) are major products of chemically or enzymatically depolymerized plastics, such as polyesters or polyethers.

View Article and Find Full Text PDF

Anchoring Charge Selective Self-Assembled Monolayers for Tin-Lead Perovskite Solar Cells.

Adv Mater

May 2024

Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China.

Self-assembled monolayers (SAMs) have displayed great potential for improving efficiency and stability in p-i-n perovskite solar cells (PSCs). The anchoring of SAMs at the conductiv metal oxide substrates and their interaction with perovskite materials must be rationally tailored to ensure efficient charge carrier extraction and improved quality of the perovskite films. Herein, SAMs molecules with different anchoring groups and spacers to control the interaction with perovskite in the p-i-n mixed Sn-Pb PSCs are selected.

View Article and Find Full Text PDF

Medium-chain-length polyhydroxyalkanoate (mcl-PHA) production by using microbial enrichments is a promising but largely unexplored approach to obtain elastomeric biomaterials from secondary resources. In this study, several enrichment strategies were tested to select a community with a high mcl-PHA storage capacity when feeding octanoate. On the basis of analysis of the metabolic pathways, the hypothesis was formulated that mcl-PHA production is more favorable under oxygen-limited conditions than short-chain-length PHA (scl-PHA).

View Article and Find Full Text PDF

Synthetic plastics derived from fossil fuels-such as polyethylene, polypropylene, polyvinyl chloride, and polystyrene-are non-degradable. A large amount of plastic waste enters landfills and pollutes the environment. Hence, there is an urgent need to produce biodegradable plastics such as polyhydroxyalkanoates (PHAs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!