Size-exclusion chromatography (SEC) and capillary zone electrophoresis (CZE) coupled with inductively coupled plasma mass spectrometry were applied to characterize low, medium, and high molecular weight cadmium complexes with glutathione and phytochelatins (PCs). The dominant stoichiometry of the complexes formed in vitro was established as 1:1 using electrospray ionization mass spectrometry. Calculated molecular masses of Cd1L1 complexes were used for calibration of the SEC and CZE methods. The results showed a lower (2 kDa) SEC column exclusion limit for cadmium complexes compared with free peptides (10 kDa), and most of the high molecular weight cadmium species were eluted in the void volume of the column. Moreover, the CZE method based on the semiempirical model of Offord to elucidate peptide migration allowed us to show a high propensity of Cd-PC complexes for polymorphism on complexation, which was also observed for extracts of Arabidopsis thaliana treated with cadmium. All the information presented is vital for understanding the mechanism of metal deactivation in plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637892PMC
http://dx.doi.org/10.1007/s00216-013-6868-3DOI Listing

Publication Analysis

Top Keywords

high molecular
12
molecular weight
12
medium high
8
complexes formed
8
mass spectrometry
8
weight cadmium
8
cadmium complexes
8
complexes
6
cadmium
5
icp cze
4

Similar Publications

A Comprehensive Atlas of AAV Tropism in the Mouse.

Mol Ther

January 2025

Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address:

Gene therapy with Adeno-Associated Virus (AAV) vectors requires knowledge of their tropism within the body. Here we analyze the tropism of ten naturally occurring AAV serotypes (AAV3B, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAVrh8, AAVrh10 and AAVrh74) following systemic delivery into male and female mice. A transgene expressing ZsGreen and Cre recombinase was used to identify transduction in a cell-dependent manner based on fluorescence.

View Article and Find Full Text PDF

Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.

View Article and Find Full Text PDF

Background: SHEN26 (ATV014) is an oral RNA-dependent RNA polymerase (RdRp) inhibitor with potential anti-SARS-CoV-2 activity. Safety, tolerability, and pharmacokinetic characteristics were verified in a Phase I study. This phase II study aimed to verify the efficacy and safety of SHEN26 in COVID-19 patients.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) has a high incidence rate and poor prognosis, and currently lacks effective therapies. Recently, peptide-based drugs have shown promise in cancer treatment. In this research, a new endogenous peptide called CBDP1 was discovered in ccRCC and its potential anti-cancer properties were examined.

View Article and Find Full Text PDF

Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!