Background: Urocortin 2 and urocortin 3 are endogenous peptides with an emerging role in cardiovascular pathophysiology. We assessed their pharmacodynamic profile and examined the role of the endothelium in mediating their vasomotor effects in vivo in man.
Methods And Results: Eighteen healthy male volunteers (23±4 years) were recruited into a series of double-blind, randomized crossover studies using bilateral forearm venous occlusion plethysmography during intra-arterial urocortin 2 (3.6 to 120 pmol/min), urocortin 3 (1.2 to 36 nmol/min), and substance P (2 to 8 pmol/min) in the presence or absence of inhibitors of cyclooxygenase (aspirin), cytochrome P450 metabolites of arachidonic acid (fluconazole), and nitric oxide synthase (L-NMMA). Urocortins 2 and 3 evoked arterial vasodilatation (P<0.0001) without tachyphylaxis but with a slow onset and offset of action. Inhibition of nitric oxide synthase with L-NMMA reduced vasodilatation to substance P and urocortin 2 (P≤0.001 for both) but had little effect on urocortin 3 (P>0.05). Neither aspirin nor fluconazole affected vasodilatation induced by any of the infusions (P>0.05 for all). In the presence of all 3 inhibitors, urocortin 2- and urocortin 3-induced vasodilatation was attenuated (P<0.001 for all) to a greater extent than with L-NMMA alone (P≤0.005).
Conclusions: Urocortins 2 and 3 cause potent and prolonged arterial vasodilatation without tachyphylaxis. These vasomotor responses are at least partly mediated by endothelial nitric oxide and cytochrome P450 metabolites of arachidonic acid. The role of urocortins 2 and 3 remains to be explored in the setting of human heart failure, but they have the potential to have major therapeutic benefits.
Clinical Trial Registration: http://www.clinicaltrials.gov//. Unique identifier: NCT01096706 and NCT01296607.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3603262 | PMC |
http://dx.doi.org/10.1161/JAHA.112.004267 | DOI Listing |
J Int Med Res
January 2025
Department of Clinical Medical Sciences, College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq.
Objective: To evaluate the value of the urocortin (UCN) level to predict preterm delivery in women with threatened preterm labour.
Methods: This prospective cohort study included 96 women with a singleton pregnancy between 28 and 34 weeks of gestation who were admitted with threatened preterm labour. The participants were monitored until delivery.
Acta Physiol (Oxf)
February 2025
Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
Aim: Somatostatin from pancreatic δ-cells is a paracrine regulator of insulin and glucagon secretion, but the release kinetics and whether secretion is altered in diabetes is unclear. This study aimed to improve understanding of somatostatin secretion by developing a tool for real-time detection of somatostatin release from individual pancreatic islets.
Methods: Reporter cells responding to somatostatin with cytoplasmic Ca concentration ([Ca]) changes were generated by co-expressing somatostatin receptor SSTR2, the G-protein Gα15 and a fluorescent Ca sensor in HeLa cells.
Neuropeptides
January 2025
Department of Pathophysiology, Faculty of Medicine, University of Szeged, Hungary.
Corticotropin-releasing factor (CRF) and urocortins (UCN1, UCN2 and UCN3) belong to the same CRF family of neuropeptides. They regulate the neuroendocrine, autonomic and behavioral responses to stress via two CRF receptors (CRF1 and CRF2). Stress, anxiety and depression affects the activity of the hypothalamic-pituitary-adrenal (HPA) axis and the serotoninergic neurotransmission, both being regulated by CRF and CRF-related peptides.
View Article and Find Full Text PDFJ Exp Biol
December 2024
Department of Integrative Biology, University of Guelph, 50 Stone Rd E, Guelph, Ontario, Canada.
While corticosteroids, including cortisol, have conserved osmoregulatory functions, the relative involvement of other stress-related hormones in osmoregulatory processes remains unclear. To address this gap, we initially characterized the gill corticotropin-releasing factor (CRF) system of Atlantic salmon (Salmo salar) and then determined: 1) how it is influenced by osmotic disturbances; 2) whether it is affected by cortisol; and 3) which physiological processes it regulates in the gills. Most CRF system components were expressed in the gills with CRF receptor 2 (crfr2a), CRF binding protein (crfbp1 and crfbp2), and urocortin 2 (ucn2a) being the most abundant.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!