Long-lived superhydrophobic colorful surfaces.

Chem Commun (Camb)

College of Resource and Environment, Shaanxi University of Science and Technology, Xi'an, 710021, PR China.

Published: May 2013

Rough structures created from bulk materials at the surface could have superior durability. Superhydrophobic colorful surfaces were fabricated through chemical etching of the fiber surfaces, followed by diffusion of fluoroalkylsilane into fibers. The obtained superhydrophobic textiles show strong durability against severe abrasion, long-time laundering, and boiling water.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3cc40895gDOI Listing

Publication Analysis

Top Keywords

superhydrophobic colorful
8
colorful surfaces
8
long-lived superhydrophobic
4
surfaces rough
4
rough structures
4
structures created
4
created bulk
4
bulk materials
4
materials surface
4
surface superior
4

Similar Publications

Using reduced sericin as a green resist for precise pattern fabrication via water-based lithography.

J Colloid Interface Sci

December 2024

Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an, University of Technology, Xi'an 710048, PR China.

The use of toxic resists and complex procedures has impeded the resolution and quality of micro/nanofabrication on virtually arbitrary substrates via photolithography. To fabricate a precise and high-resolution pattern, a sericin nanofilm-based coating was developed by reducing disulfide bonds and subsequently assembling sericin protein. Upon exposure to ultraviolet (UV) light, intermolecular amide bonds in sericin are cleaved through the action of a reducing agent, allowing the reduced sericin (rSer) coating to exhibit the functional ability to generate diverse geometric micro/nanopatterns through photomask-governed photolithography.

View Article and Find Full Text PDF

Fly ash (FA) is the main solid waste emitted from coal-fired power plants. Due to its high yield, low utilization rate, and occupation of a large amount of land, it exerts enormous pressure on the Earth's environment. With the deepening of the concept of sustainable development, exploring the reuse of industrial waste such as FA has become a key strategy.

View Article and Find Full Text PDF

Nature-inspired, robust, durable, liquid-repellent interfaces have attracted considerable interest in the field of wood biomimetic intelligence science and technology application. However, realizing green environmental protection and low maintenance and replacement cost wood surfaces constructed with micro/nanoarchitectures is not an easy task. Aiming at the problem of poor waterproof performance of wood, a silicon dioxide/polydimethylsiloxane (SiO/PDMS) self-cleaning programmable superhydrophobic coating was biomimetically constructed on the wood substrate by surface-embedded dual-dipping design based on the "substrates + nanoparticles" hybrid principle of the lotus leaf effect.

View Article and Find Full Text PDF

Tailoring anisotropic ZnO/wood-structural holocellulose hybrids for dye degradation through controlled nanoinsertion.

Int J Biol Macromol

December 2024

Key Laboratory of Mechanics On Disaster and Environment in Western China and the Ministry of Education of China (Lanzhou University), Lanzhou 730000, China; College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000, China. Electronic address:

Nanostructured inorganic/wood-structural holocellulose hybrids offer new potential applications, including mechanical energy conversion, superhydrophobic materials, gas adsorption and so on. Owing to the anisotropy of wood, controlling the morphology of mineral particles inside porous holocellulose scaffold is still far from satisfactory. In this work, a homogeneous zinc oxide (ZnO) decoration inside wood-structural holocellulose scaffold was achieved while the morphology, distribution and content of ZnO micro-nano particles were controllable through changing the conditions of hydrothermal growth.

View Article and Find Full Text PDF

Highly durable color superhydrophobic coatings have attracted much attention in indoor and outdoor decorative applications. In this paper, colorful superhydrophobic coatings with excellent durability were prepared using silane coupling agent-modified iron oxide as the pigment and polydimethylsiloxane-compounded epoxy resin as the base material by the three-step method of "spraying-sanding-spraying". The method is low cost, has a simple preparation process, enables large-area preparation, and has a restorative function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!