Background: Ketoconazole binds to and antagonizes pregnane X receptor (PXR) activation.
Results: Yeast high throughput screens of PXR mutants define a unique region for ketoconazole binding.
Conclusion: Ketoconazole genetically interacts with specific PXR surface residues.
Significance: A yeast-based genetic method to discover novel nuclear receptor interactions with ligands that associate with surface binding sites is suggested. The pregnane X receptor (PXR) is a master regulator of xenobiotic metabolism, and its activity is critical toward understanding the pathophysiology of several diseases, including inflammation, cancer, and steatosis. Previous studies have demonstrated that ketoconazole binds to ligand-activated PXR and antagonizes receptor control of gene expression. Structure-function as well as computational docking analysis suggested a putative binding region containing critical charge clamp residues Gln-272, and Phe-264 on the AF-2 surface of PXR. To define the antagonist binding surface(s) of PXR, we developed a novel assay to identify key amino acid residues on PXR based on a yeast two-hybrid screen that examined mutant forms of PXR. This screen identified multiple "gain-of-function" mutants that were "resistant" to the PXR antagonist effects of ketoconazole. We then compared our screen results identifying key PXR residues to those predicted by computational methods. Of 15 potential or putative binding residues based on docking, we identified three residues in the yeast screen that were then systematically verified to functionally interact with ketoconazole using mammalian assays. Among the residues confirmed by our study was Ser-208, which is on the opposite side of the protein from the AF-2 region critical for receptor regulation. The identification of new locations for antagonist binding on the surface or buried in PXR indicates novel aspects to the mechanism of receptor antagonism. These results significantly expand our understanding of antagonist binding sites on the surface of PXR and suggest new avenues to regulate this receptor for clinical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3650402 | PMC |
http://dx.doi.org/10.1074/jbc.M113.455485 | DOI Listing |
Sci Rep
December 2024
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
The Epstein-Barr virus (EBV) is widespread and has been related to a variety of malignancies as well as infectious mononucleosis. Despite the lack of a vaccination, antiviral medications offer some therapy alternatives. The EBV BZLF1 gene significantly impacts viral replication and infection severity.
View Article and Find Full Text PDFSci Rep
December 2024
Bioinformatics Laboratory, College of Computing, University Mohammed VI Polytechnic, Ben Guerir, Morocco.
Hepatitis C virus (HCV) presents a significant global health issue due to its widespread prevalence and the absence of a reliable vaccine for prevention. While significant progress has been achieved in therapeutic interventions since the disease was first identified, its resurgence underscores the need for innovative strategies to combat it. The nonstructural protein NS5A is crucial in the life cycle of the HCV, serving as a significant factor in both viral replication and assembly processes.
View Article and Find Full Text PDFNat Commun
December 2024
Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
By targeting the essential viral RNA-dependent RNA polymerase (RdRP), nucleoside analogs (NAs) have exhibited great potential in antiviral therapy for RNA virus-related diseases. However, most ribose-modified NAs do not present broad-spectrum features, likely due to differences in ribose-RdRP interactions across virus families. Here, we show that HNC-1664, an adenosine analog with modifications both in ribose and base, has broad-spectrum antiviral activity against positive-strand coronaviruses and negative-strand arenaviruses.
View Article and Find Full Text PDFArch Pharm (Weinheim)
January 2025
European Institute for Molecular Imaging (EIMI), University of Muenster, Muenster, Germany.
The P2X4 receptor (P2X4R), a ligand-gated ion channel activated by ATP, plays a critical role in neuroinflammation, chronic pain, and cancer progression, making it a promising therapeutic target. In this study, we explored the design and synthesis of piperazine-based P2X4R antagonists, building on the structural framework of paroxetine. A series of over 35 compounds were synthesized to investigate structure-activity relationships (SARs) in a Ca²⁺-flux assay for P2X4R antagonistic activity.
View Article and Find Full Text PDFCell Biol Int
December 2024
College of Veterinary Medicine, Jilin University, Changchun, China.
Melatonin (MT), an endogenous hormone secreted by pineal gland, has the sedative, anti-inflammatory and antioxidant functions. However, there are few studies on whether MT affects the proliferation and differentiation of antler chondrocytes. The present study investigated the influences of MT on the proliferation and differentiation of antler chondrocytes, explored its regulation on runt-related transcription factor 2 (RUNX2), NOTCH1 and sonic hedgehog (SHH) signaling, and elucidated their interplays.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!