Rationale: Abdominal aortic aneurysms (AAAs) are a chronic inflammatory vascular disease for which pharmacological treatments are not available. A mouse model of AAA formation involves chronic infusion of angiotensin II (AngII), and previous studies indicated a primary role for the AngII type 1a receptor in AAA formation. β-arrestin (βarr)-2 is a multifunctional scaffolding protein that binds G-protein-coupled receptors such as AngII type 1a and regulates numerous signaling pathways and pathophysiological processes. However, a role for βarr2 in AngII-induced AAA formation is currently unknown.
Objective: To determine whether βarr2 played a role in AngII-induced AAA formation in mice.
Methods And Results: Treatment of βarr2(+/+) and βarr2(-/-) mice on the hyperlipidemic apolipoprotein E-deficient (apoE(-/-)) background or on normolipidemic C57BL/6 background with AngII for 28 days indicated that βarr2 deficiency significantly attenuated AAA formation. βarr2 deficiency attenuated AngII-induced expression of cyclooxygenase-2, monocyte chemoattractant protein-1, macrophage inflammatory protein 1α, and macrophage infiltration. AngII also increased the levels of phosphorylated extracellular signal-regulated kinase 1/2 in apoE(-/-)/βarr2(+/+) aortas, whereas βarr2 deficiency diminished this increase. Furthermore, inhibition of extracellular signal-regulated kinase 1/2 activation with CI1040 (100 mg/kg per day) reduced the level of AngII-induced cyclooxygenase-2 expression in apoE(-/-)/βarr2(+/+) mice to the level observed in apoE(-/-)/βarr2(-/-) mice. AngII treatment also increased matrix metalloproteinase expression and disruption of the elastic layer in apoE(-/-)/βarr2(+/+) aortas, and βarr2 deficiency reduced these effects.
Conclusions: βarr2 contributes to AngII-induced AAA formation in mice by phosphorylated extracellular signal-regulated kinase 1/2-mediated cyclooxygenase-2 induction and increased inflammation. These studies suggest that for the AngII type 1a receptor, G-protein-independent, βarr2-dependent signaling plays a major role in AngII-induced AAA formation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4118213 | PMC |
http://dx.doi.org/10.1161/CIRCRESAHA.112.280399 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!