β-Arrestin-2 deficiency attenuates abdominal aortic aneurysm formation in mice.

Circ Res

Laboratory of Toxicology and Pharmacology, Comparative Medicine Branch, and Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.

Published: April 2013

Rationale: Abdominal aortic aneurysms (AAAs) are a chronic inflammatory vascular disease for which pharmacological treatments are not available. A mouse model of AAA formation involves chronic infusion of angiotensin II (AngII), and previous studies indicated a primary role for the AngII type 1a receptor in AAA formation. β-arrestin (βarr)-2 is a multifunctional scaffolding protein that binds G-protein-coupled receptors such as AngII type 1a and regulates numerous signaling pathways and pathophysiological processes. However, a role for βarr2 in AngII-induced AAA formation is currently unknown.

Objective: To determine whether βarr2 played a role in AngII-induced AAA formation in mice.

Methods And Results: Treatment of βarr2(+/+) and βarr2(-/-) mice on the hyperlipidemic apolipoprotein E-deficient (apoE(-/-)) background or on normolipidemic C57BL/6 background with AngII for 28 days indicated that βarr2 deficiency significantly attenuated AAA formation. βarr2 deficiency attenuated AngII-induced expression of cyclooxygenase-2, monocyte chemoattractant protein-1, macrophage inflammatory protein 1α, and macrophage infiltration. AngII also increased the levels of phosphorylated extracellular signal-regulated kinase 1/2 in apoE(-/-)/βarr2(+/+) aortas, whereas βarr2 deficiency diminished this increase. Furthermore, inhibition of extracellular signal-regulated kinase 1/2 activation with CI1040 (100 mg/kg per day) reduced the level of AngII-induced cyclooxygenase-2 expression in apoE(-/-)/βarr2(+/+) mice to the level observed in apoE(-/-)/βarr2(-/-) mice. AngII treatment also increased matrix metalloproteinase expression and disruption of the elastic layer in apoE(-/-)/βarr2(+/+) aortas, and βarr2 deficiency reduced these effects.

Conclusions: βarr2 contributes to AngII-induced AAA formation in mice by phosphorylated extracellular signal-regulated kinase 1/2-mediated cyclooxygenase-2 induction and increased inflammation. These studies suggest that for the AngII type 1a receptor, G-protein-independent, βarr2-dependent signaling plays a major role in AngII-induced AAA formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4118213PMC
http://dx.doi.org/10.1161/CIRCRESAHA.112.280399DOI Listing

Publication Analysis

Top Keywords

aaa formation
28
angii-induced aaa
16
βarr2 deficiency
16
angii type
12
extracellular signal-regulated
12
signal-regulated kinase
12
abdominal aortic
8
formation
8
formation mice
8
type receptor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!