A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Combination of in situ straining and ACOM TEM: a novel method for analysis of plastic deformation of nanocrystalline metals. | LitMetric

Combination of in situ straining and ACOM TEM: a novel method for analysis of plastic deformation of nanocrystalline metals.

Ultramicroscopy

Institute of Nanotechnology-INT, Karlsruhe Institute of Technology-KIT, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.

Published: May 2013

Nanocrystalline metals are expected to exhibit different deformation mechanisms when compared to their coarse grained counterparts because the dislocation storage capacity decreases and the grain boundary mediated processes become more pronounced with decreasing grain size. As a new approach to directly image and quantify the plastic deformation processes in nanocrystalline thin films, a combination of automated crystal orientation mapping in microprobe STEM mode with in situ straining inside a TEM was developed. ACOM-TEM closes the gap between EBSD and BF/DFTEM by providing full orientation maps with nanometer resolution. The novel combination with in situ straining provided for the first time the possibility to directly image and quantify the structural changes of all crystallites in the ensemble of a thin film at the nanometer scale during mechanical deformation. It was used to characterize the metallographic changes during tensile deformation of a nanocrystalline Au thin film prepared by magnetron sputtering. The investigation of the grain size, grain orientation and twinning on a global (grain average over a micron sized area) and local (assembly of selected grains) scale allowed for the development of an in depth picture of the deformation processes. Grain boundary motion and local grain rotation were two of the processes acting to dissipate the applied stress. Additionally, twinning/detwinning occurred simultaneously during straining. These processes, which occurred locally already in the micro-plastic regime, led to global grain growth starting at the transition to the macro-plastic deformation regime.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultramic.2012.12.019DOI Listing

Publication Analysis

Top Keywords

situ straining
12
combination situ
8
plastic deformation
8
deformation nanocrystalline
8
nanocrystalline metals
8
grain
8
grain boundary
8
grain size
8
directly image
8
image quantify
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!