Obesity is associated with altered arterial structure and function leading to arterial narrowing in most vascular beds, especially when associated with aging. Nevertheless, mesenteric blood flow remains elevated in obese rats, although the effect of aging remains unknown. We investigated mesenteric artery narrowing following blood flow reduction in vivo in 3- and 12-month-old obese Zucker rats. After 21 days, inward remodeling occurred in low flow (LF) arteries in young and old lean rats and in young obese rats (30% diameter reduction). Diameter did not significantly decrease in old obese rats. Phenylephrine-mediated contraction was reduced by approximately 20% in LF arteries in all groups but in old obese rat arteries in which the decrease reached 80%. LF arteries expressed cyclooxygenase-2 and blood 6-keto-PGF1alpha (prostacyclin metabolite) was elevated in old obese rats. In old obese rats, acute cyclooxygenase-2 blockade restored phenylephrine-mediated contraction in LF arteries and chronic cyclooxygenase-2 blockade restored inward remodeling and contractility to control level. Thus, in old obese rats, cyclooxygenase-2-derived prostacyclin prevented the diameter reduction induced by a chronic decrease in blood flow. This adaptation is in favor of a preserved perfusion of the mesentery by contrast with other vascular territories, possibly amplifying the vascular disorders occurring in obesity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vph.2013.03.001DOI Listing

Publication Analysis

Top Keywords

obese rats
24
blood flow
16
obese
9
flow reduction
8
obese zucker
8
elevated obese
8
rats
8
diameter reduction
8
phenylephrine-mediated contraction
8
cyclooxygenase-2 blockade
8

Similar Publications

Sulphated polysaccharides (SPs) are negatively charged compounds found in the cell wall of seaweeds or marine macro algae. These compounds exhibit a range of pharmacological activities, including anti-obesity effects. The aim of this systematic review as well as meta-analysis was to assess the potentials of seaweed-derived SPs to mitigate obesity through a systematic review and meta-analysis of animal model-based studies.

View Article and Find Full Text PDF

Obesity is increasingly taking an important stage as a cause of death worldwide, and interventions with a good cost-effectiveness ratio are needed. is one of these natural products with health benefits. Objective.

View Article and Find Full Text PDF

Effects of time-restricted feeding (TRF)-model of intermittent fasting on adipose organ: a narrative review.

Eat Weight Disord

December 2024

Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Sahid-Erabi St, Yemen St, Chamran Exp, Tehran, Iran.

Time-restricted feeding (TRF), an intermittent fasting approach involving a shortened eating window within 24 h, has gained popularity as a weight management approach. This review addresses how TRF may favor fat redistribution and the function of the adipose organ. TRF trials (mainly 16:8 model, with a duration of 5-48 weeks) reported a significant weight loss (1.

View Article and Find Full Text PDF

Epilepsy patients are at a higher risk of developing overweight and obesity. Given the thermogenic properties of (Guarana), this study aimed to evaluate a potential pharmacokinetic interaction between extract and phenytoin in rats. Two pharmacokinetic studies were developed with and phenytoin: a coadministration and a pre-treatment study.

View Article and Find Full Text PDF

Obesity and its associated intestinal inflammatory responses represent a significant global challenge. (IF) is a dietary intervention demonstrating various health benefits, including weight loss, enhanced metabolic health, and increased longevity. However, its effect on the intestinal inflammation induced by high-fat diet (HFD) is still not fully comprehended.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!