Microbes and plants synthesize essential branched-chain amino acids (BCAAs) such as valine, leucine, and isoleucine via a common biosynthetic pathway in which the first reaction is catalyzed by acetohydroxyacid synthase (AHAS, EC 4.1.3.18). Recently, AHAS was identified as a potential anti bacterial target. To help find an effective inhibitor that could act as an antibacterial compound, we cloned and characterized the catalytic subunit (CSU) of Pseudomonas aeruginosa AHAS, and found four potent inhibitors through chemical library screening. The ilvI gene of P. aeruginosa encodes a 65-kDa AHAS protein, consistent with the size of the purified enzyme on SDS-PAGE. Enzyme kinetics showed that the enzyme has a Km of 14.2 mM and a specific activity of 0.12 U/mg. Enzyme activity was optimum at a temperature of 37 °C and a pH of 7.5. The Kd for thiamine diphosphate (ThDP) was 89.92 ± 17.9 μM, as determined by fluorescence quenching. The cofactor activation constants (Ks) for ThDP and (Kc) for Mg(2+) were 0.6 ± 0.1 and 560.8 ± 7.4 μM, respectively. Further, we determined that AVS2087, AVS2093, AVS2236, and AVS2387 compounds are potent inhibitors of the catalytic subunit of P. aeruginosa AHAS. These compounds inhibit nearly 100% of AHAS activity, with IC50 values of 1.19 μM, 5.0 nM, 25 nM, and 13 nM, respectively. Compound AVS2093 showed growth inhibition with a minimal inhibitory concentration (MIC) of 742.9 μg/ml against P. aeruginosa strain ATCC 9027. Furthermore, these findings were supported by molecular docking studies with the AVS compounds against P. aeruginosa AHAS in which AVS2093 showed minimum binding energy (-7.8 kJ/mol) by interacting with the receptor through a single hydrogen bond of 2.873 Å. Correlation of AVS2093 activity with P. aeruginosa AHAS cell growth inhibition suggested that AHAS might serve as a target protein for the development of novel antibacterial therapeutics. Results of the current study provide an impetus to further evaluate the potency of these inhibitors against pathogenic P. aeruginosa strains in vivo and to design more potent antibacterial agents based on these AVS inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biochi.2013.03.007DOI Listing

Publication Analysis

Top Keywords

aeruginosa ahas
16
potent inhibitors
12
ahas
9
aeruginosa
8
pseudomonas aeruginosa
8
acetohydroxyacid synthase
8
catalytic subunit
8
μm determined
8
growth inhibition
8
inhibitors
5

Similar Publications

Activity, toxicity, molecular docking, and environmental effects of three imidazolinone herbicides enantiomers.

Sci Total Environ

May 2018

MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:

All imidazolinone (IMI) herbicides are chiral consisting of two enantiomers; however, studies on the enantioselectivities of their interactions are limited. This study is a systematic assessment of the enantiomers and racemates of IMI herbicides, including semi-preparation and determination of absolute configurations, stereoselective bioactivity toward target organisms (Echinochloa crus-galli and Microcystis aeruginosa), and toxicity toward Michigan Cancer Foundation-7 (MCF-7) cells. R-imidazolinones were found to be more active than S-IMIs in the inhibition of target organisms, and neither enantiomer had estrogenic activity.

View Article and Find Full Text PDF

Microbes and plants synthesize essential branched-chain amino acids (BCAAs) such as valine, leucine, and isoleucine via a common biosynthetic pathway in which the first reaction is catalyzed by acetohydroxyacid synthase (AHAS, EC 4.1.3.

View Article and Find Full Text PDF

Emerging resistance to current antibiotics raises the need for new microbial drug targets. We show that targeting branched-chain amino acid (BCAA) biosynthesis using sulfonylurea herbicides, which inhibit the BCAA biosynthetic enzyme acetohydroxyacid synthase (AHAS), can exert bacteriostatic effects on several pathogenic bacteria, including Burkholderia pseudomallei, Pseudomonas aeruginosa, and Acinetobacter baumannii. Our results suggest that targeting biosynthetic enzymes like AHAS, which are lacking in humans, could represent a promising antimicrobial drug strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!